コンクリート構造物の漏水発生位置検出手法の基礎的検討

- 独立行政法人土木研究所 正会員 山口 嘉一
 - 坂田電機㈱ 正会員 樋口 佳意
 - 非会員 山崎 宣悦
 - 非会員 後藤 知英

1.はじめに

コンクリート建築物の屋根やトンネル覆工などの遮 水機能が求められるコンクリート構造物に対して確実 な維持管理を行なうために,漏水の発生位置を検出す るシステムの開発が求められている.

コンクリートにクラックが生じて浸水したとすると, その周囲の誘電率は大きくなる.平行二線の特性イン ピーダンスは,周囲の媒質の誘電率によって変化する. つまり,コンクリート中に平行二線を埋設すると浸水に より特性インピーダンスが低下する.また,平行二線 にパルス波を入射すると特性インピーダンスが変化す る箇所で反射波が発生することから,入射から反射波 到達までの時間を測定することで漏水の発生位置を特 定できる.そこで,平行二線としてレッヘル線をコン クリート内部に配置し,電気パルスを入射して反射波 形を観測する漏水発生位置検出手法についての基礎的 検討を実施した.

2.漏水発生位置検出原理

平行二線の特性インピーダンスZは次式で表される.

$$Z = \frac{1}{\sqrt{\mu}} \ln \frac{D}{a}$$
(1)

ここで,µは平行二線周囲の媒質の透磁率, は平行 二線周囲の媒質の誘電率,Dは線間の中心距離,aは 線の半径とする.

(1)式より明らかなように,誘電率 がコンクリート に比べて大きい水が平行二線の周囲に混入すると,そ の区間の特性インピーダンスは低下する.また,特性イ ンピーダンスが Z₀から Z₁へ変化する箇所では反射波が 生じ,その反射率 は次式で表される.

$$=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}$$
(2)

いま,浸水していない箇所の特性インピーダンスがZ₀, 浸水している箇所のそれがZ₁である場合,Z₀>Z₁すなわ キーワード コンクリート,漏水,クラック,位置検出,パルス 連絡先 〒202-0022 東京都西東京市柳沢 2-17-20 坂田電機㈱ TEL 0424-64-3111

ち <0 となり、反射波は入射波に対して逆極性となる. 平行二線の長さ方向における特性インピーダンスの 変化の例を図1に示す。図1において平行二線の左端 に電気パルスを入射すると、第一の反射波は図中の で発生し、第二の反射波は図中の ,第三の反射波は 終端である図中の で発生する.第一の反射波は入射 波に対して負極性となり、第二、第三の反射波は正極 性となる.つまり、 から までの区間が水の存在を 示す領域となる.

図1 浸潤部分を有する平行二線の特性インピーダンス

3.実験方法

実験の概要を図2に示す.図3に示すような平行二 線である市販のレッヘル線を内部に配置した長さ4m のコンクリート供試体を製作し,人工的に形成したク ラックから注水することで擬似した漏水を発生させた 時の反射波の観測を行った.

入射する電気パルスは幅 10ns,振幅 4.5Vとし,反射 波はオシロスコープを用いて反射波を測定するととも にパソコンにて記録した.なお,パルスは,反射波形 をオシロスコープで常に監視できるように,10µs 程度 の間隔で連続的に出力した.

実験は,表1に示す 注水前(漏水なし), レッヘ ル線の長さ方向の範囲が5cmになるクラックを形成し て注水, 範囲が10cmになるクラックを形成して注水,

範囲が40cmになるクラックを発生させて注水の4ケ ースについて行なった.また,クラックの範囲は,レ ッヘル線が測定器から8mになる箇所を基準に,測定器 から離れる方向へ広げた.

表1 実験ケース

実験ケース	クラック範囲 _(cm) 注水の有無		備考
	0	×	
	5		_{8.00~8.05m} の箇所
	10		8.00~8.10m "
	40		8.00~8.40m ″

4.実験結果

ケース の注水前に観測した反射波を図 4 に,ケー ス のクラック範囲が 40cmである場合の結果を図 5 に 示す.ここで横軸については,パルス入射時間を基準 とし,波形の観測時間とパルスの伝搬速度から反射波 発生位置を算出したうえで整理している.

図4と図5を比較すると,注水箇所である測定器か ら8mの位置において入射波に対する負極性の反射波 が生じている.これから,クラック範囲40cm相当の浸 潤により,明らかな反射波が注水位置に生じることが わかった.

図6は、図4と図5の結果の差分を示したものである.1m および3m付近で乱反射による波形が見られるものの,注水箇所である8m反射波が生じていることがより明確にわかる.

一方,ケース , のクラック範囲が 5cm,10cmの 場合では反射波の振幅が小さく,注水位置の検出は困 難であった.つまり,漏水を確実に検知するためには, レッヘル線に沿って数十 cm 程度以上の浸水が必要で あることがわかる.したがって,実際のコンクリート 構造物に発生するような幅の狭いクラックを検出する ためには,クラックからの浸水をレッヘル線周辺で拡 散させる工夫が必要と考えられる.

5.まとめ

平行二線であるレッヘル線への電気パルスの入射に より,コンクリート内の漏水発生位置が検出できるこ とが確認された.その際,反射波の漏水前後における 波形の差分を得ることにより,漏水発生位置をより明 確に検出できることが確認できた.

しかし,レッヘル線を使用してコンクリートに形成 された範囲の狭いクラックによる漏水を検出する場合, レッヘル線と浸潤した水の接する区間が狭いため感度 が低くなる.今後は,レッヘル線などの平行二線の周 囲に浸水性の高い材料を配置し,狭いクラックからの 漏水が広い区間で平行二線と接する構造のセンサケー ブルを検討する.

