3次元固有振動解析による鋼アーチ橋のモデル化の検討

宇都宮大学	学生員 松田 政禎
宇都宮大学	正 員 中島 章典
宇都宮大学	正 員 斉木 功
宇都宮大学	学生員 柳 智子

1. はじめに

アーチ橋のような複雑な構造の耐震設計に際しては,2次 元あるいは3次元の数値解析による挙動の把握が必要とされ ている¹⁾.しかし,3次元解析モデルの妥当性を実構造の測 定結果と比較検討した例は少ない.

そこで本研究では,既設鋼アーチ橋を対象として3次元の 固有値解析を行い,実橋で計測された値と比較することによ り,モデル化の妥当性を検討する.

2. 解析対象

車両走行法による振動測定調査が行われた²⁾愛知県長篠 大橋 (橋長 80 m, アーチライズ 11m, 上路式 2 ヒンジ鋼アー チ橋)を解析対象とした.

図-1は、床版を含む上部工の断面図³⁾を示す、幅員7m の車道,両側に2mの歩道があり,総幅員12.8mである. 桁部分は補剛桁2本,縦桁3本からなる.主要な部材の断 面として,補剛桁と縦桁,および横桁はI型断面,アーチリ ブは箱型断面である.また,振動測定調査結果を表-1に示 す.

モデル化と検討項目 3.

図-2は,本研究で用いる長篠大橋の3次元骨組モデルを 示す.ここでは Bernoulli-Euler 梁要素を用いて, FEM に よって立体骨組にモデル化した.

アーチリブ,補剛桁,縦桁,横桁,支柱,横構,対傾構な どの部材は梁要素とした.コンクリート床版は,補剛桁と完 全に一体となっているものと仮定し,設計においてよく用い られる方法により鋼換算したうえで桁の梁要素に含めること により考慮した,境界条件は実橋に対応させアーチ支承部で ヒンジを設定し,これを基本モデルとした.

以上の条件でモデル化したアーチ橋について,主に2つの 観点から検討を行った.

検討1)として,桁の剛性がアーチ橋の振動特性に与える 影響を考えた.これは,桁部分には解析でその剛性が考慮さ れない舗装,地覆,高欄などの添架物がある.そこで,上部 構造部分の断面 2 次モーメントを基本モデルに対し段階的 に増していき,振動数と振動モードを調べる.また,床版を 梁にモデル化しているので,床版の橋直角方向の一体性が弱 い.そこで,振動時の補剛桁と縦桁の一体性を補完するもの として, 横桁の曲げ剛性を増加させた場合, 上横構の軸剛性 を増加させた場合を考えた.

的,振動振幅の小さい領域で得られていること,また,補剛 有振動の変化を調べた.

表−1 実測値と基本モデルの固有振動数 (Hz)

次数	振動モード	基本モデル	実測値
1次	面内逆対称1次	1.27	1.45
2次	面外対称1次	1.81	2.53
3次	面内対称1次	2.56	2.75
4次	ねじり逆対称1次	3.03	
5次	面内対称2次	3.41	3.22
6次	面内逆対称2次	4.52	
7次	面外対称2次	4.86	
8次	ねじり対称 1 次	5.15	4.31
9次	面内逆対称3次	5.77	
10次	ねじり対称2次	6.65	

桁の桁端は隣接径間の部材に落橋防止構造により連結されて |検討2)は,モデルの境界条件に注目した.実測値は比較 いることを考慮して,境界条件の組み合わせの違いによる固

Key Words: 耐震工学, 固有振動特性, 鋼アーチ橋, 3次元解析, モデル化

〒 321-8585 宇都宮市陽東 7-1-2 宇都宮大学工学部建設学科 Tel.028-689-6210 Fax.028-689-6208

4. 解析結果

表-1 に実測値と基本モデルの固有振動数を示す.実測値 は基本モデルに対し,1次で1.1倍,2次で1.4倍,3次で 1.1倍,5次で0.94倍,8次で0.84倍である.ただし,高 次振動は,約2Hzの間に4次から8次までの振動が混在し ており,実測値と単純に比較することは難しいと思われる.

実測値と計算値が異なる理由として次のことが考えられる.解析ではアーチ支承をヒンジとしているが,走行実験のような振動振幅の小さい領域では,支承が半固定状態である可能性がある.また,床版のモデル化,補剛材などの影響が考えられる.そこで,これらについて以下の検討を行う.

図-3は検討1)の結果を示す.縦軸に補剛桁および縦桁の 剛性増加時の固有振動数を基本モデルで無次元化したもの, 横軸に振動次数を示す.各モードと桁剛性については,全次 数で比例的に振動数が増えている.これは,基本モデルの 振動モードが一定であることを示しており,剛性がモードに 影響を与えないことが分かった.また,2,7次の面外振動 モードでは振動数増加が鈍い.これは,補剛桁,縦桁の剛性 が面外振動にあまり影響しないことを示している.つまり, 補剛桁および縦桁を鋼換算した場合,桁剛性を増加させるこ とによって,1,3次の計算値は実測値に近づいてくる.

図-4は横桁および上横構に剛性を増加させた結果である.縦軸に基本モデルで無次元化した固有振動数比,横軸に振動次数を示す.タイプAは横桁の曲げ剛性を10倍したモデル,タイプBは上横構の軸剛性を増加するために断面積を100倍したモデルである.このとき,上横構は補剛桁と縦桁

図-4 横桁および上横構の剛性と振動数

中央を結ぶ位置とした.タイプA, B共に, 面外振動である 2次モード, ねじり振動である4次モードにおいて, 振動数 が増えている.これは,基本モデルの橋軸直角方向の一体性 が不足していることによると考えられ,横桁および上横構の 剛性を上げることで,実測値に近づくことが分かる.

図-5 は検討2)の結果を示す.縦軸に基本モデルで無次元 化した固有振動数比,横軸に振動次数を示す.タイプCは, 桁支承部分において面外方向の変位を固定したモデル,タイ プDは,アーチ支承において回転を含むすべての変位を拘 束したモデルである.タイプCでは,2,5次で振動数が上 がっている.ただし,図-5では,4次は面内対称2次モー ド,5次はねじり逆対称1次モードであり,基本モードと異 なるモードである.タイプDでは,1次の振動数が他の次 数に比べて,突出している.これらと振動モードより次のよ うに考察される.桁の境界条件として,面外方向変位を拘束 すると,面外振動に対する剛性が上がる.さらに,高次モー ドが基本モデルと前後する.よって,支承はアーチ橋の振動 モードに影響することが分かった.

以上の検討より,基本モデルは面外剛性が弱く,実構造を 正確にモデル化できていないことが分かった.しかし,床版 のモデルを橋直角方向に設定し,桁とアーチの支承部分にお いて,実構造を厳密に考慮することで実測値に近づけること が出来ると考えられる.

5. おわりに

本解析では,線形解析に用いられる合成桁を鋼換算したモ デルにより,着目点ごとに振動特性の把握と実測値との比較 を行い,モデル化の妥当性を検討した.今後は,支承の回転 ばね,床版のモデル化について検討を行う予定である.

謝辞: 本研究を進めるにあたり,有意なご助言と貴重な資料の提供をいただきました,九州東海大学の加藤雅史先生に 心より感謝いたします.

参考文献

- 1) 柳智子,中島章典,斉木功:鋼アーチ橋の2次元弾塑性 地震時挙動とそのモデル化,構造工学論文集,Vol.49A, 2003.3.
- 2) 名古屋大学工学部土木工学科:長篠大橋振動測定調査報告書,1990.3.
- 3) 愛知県新城土木事務所:橋梁整備工事の内設計,上部工 設計計算書,1985.