片振り・両振り載荷時におけるスタッド基部のひずみ性状の検討

宇都宮大学 🔾	学生員	門垣 武	宇都宮大学	学生員	Miah Md.Khasro
宇都宮大学	正会員	中島 章典	宇都宮大学	正会員	斉木 功
トピー工業		大江 浩一			

1. はじめに

近年,土木構造物において,鋼・コンクリート複合構造が 数多く採用されている.このことから,鋼とコンクリート を一体化させるスタッドの挙動を解明することは重要であ る.しかし,通常使用されるスタッドや過去の研究のスタッ ド¹⁾では,最重要点であるスタッド基部の変形や応力,ひず みを測定することは困難である.そこで本研究では,スタッ ドにパイプを用い,静的な片振り・両振り載荷時におけるス タッド基部のひずみをパイプの内側から測定し,両者の載荷 状態における挙動の差異を調べる.

2. 試験体概要

図-1に試験体の概要を示す.この試験体は,通常の押抜き試験体²⁾と異なり,1枚の鋼板を試験機でつかみ,引張載荷と圧縮載荷を行うことが可能である.その際,剛体回転を防ぐためにコンクリートブロックをコの字形にし,その上下を厚さ25mmの鋼板と補剛材を有する厚さ19mmの台座で挟み, ϕ 20mmの両端だけネジを切った鋼棒で固定している.この際,8本の鋼棒にかかるトルクを50N·mに統し,試験体に一様な支圧力 $(1.0N/mm^2$ 程度)が作用するようにした.

試験機でつかむ鋼板は,スタッドがコンクリートブロック の中央高さに位置するように鋼板の下部から125mmの位置 に水平間隔60mmで2個の穴を開け,そこへパイプスタッ ドを差し込み溶接した(図-2).スタッド全高は120mmで 頭の寸法は直径35mm,厚さ10mmである.パイプは外径 21.7mm,内径17.9mm,降伏応力421N/mm²のものを用 いた.そして,載荷によるパイプの断面変形を極力防ぐため に,パイプ中にモルタルを充填した.ひずみゲージは,載荷 方向上下面のスタッド中央高さの外側と,鋼板の穴の縁から 18mm付近のパイプ内側,さらに,鋼板の上から170mm位 置の裏表に貼付した(図-2).また,鋼板とコンクリートブ ロックの相対ずれ変位を高感度変位計により計測した.コン クリートとモルタルの圧縮強度はそれぞれ42.2N/mm², 51.1N/mm²である.

3. 試験方法

載荷方法は,片側単調載荷,片振り載荷,両振り載荷の3 ケースとする.単調載荷はスタッドが破壊するまで一方向に 徐々に載荷していくもので,圧縮載荷(単調圧縮)と引張載荷 (単調引張)を行う.片振り載荷は除荷状態とピーク荷重を繰 り返して載荷するもので,ピーク荷重は漸増させる.これも 圧縮載荷(片振圧縮)と引張載荷(片振引張)を行う.両振り 載荷は圧縮側のピーク荷重と引張側のピーク荷重を繰り返し て載荷するもので,圧縮載荷から始めるもの(両振圧縮)と引 張載荷から始めるもの(両振引張)を行う.ピーク荷重は,せ ん断力振幅を片振り載荷時と同じにするものと,片振り載荷

時のピーク荷重と同じにするもの (両振圧縮 A) を行う. 試験 は,全ケースをそれぞれ3体ずつ,計21体行う.計測項目 は載荷荷重,スタッドのずれ変位,ひずみとした.

試験結果と考察

これまでに得られた最大せん断耐荷力,ずれ剛性及び,降 伏せん断耐荷力を表-1にまとめる.ここで,ずれ剛性とは 最大せん断耐荷力の1/3の荷重に対応するずれ変位と原点と の割線勾配で与えられ,降伏せん断耐荷力とはずれ剛性に 等しい勾配で0.2mmオフセットにより得られる数値であ

る²⁾.最大せん断耐荷力と降伏せん断耐荷力は各試験とも顕 著な差は見られない.単調引張のずれ剛性が低いのは,鋼棒 がわずかに伸びている影響と,ずれ変位の測定精度の影響で あると考えられる.両振圧縮は圧縮側で破壊させたため,圧 縮側で各数値を算出したので単調圧縮に近い値が出ていると 考えられる.両振引張と単調引張の値が近いのも同様の理由

であると考えられる.

図-3に単調載荷のときのせん断力 - ずれ変位関係を示す. この図は,圧縮載荷と引張載荷の符号を引張側に合わせて描き,比較する.そして図-4に両振載荷のせん断力 - ずれ変 位関係と単調引張のせん断力 - ずれ変位関係を重ねたものを 示す.縦軸にスタッド1本当たりに作用するせん断力,横軸 に高感度変位計により,2点で計測されたコンクリートと鋼 板のずれ変位を平均したものを示す.図-3の関係から,単 調載荷の圧縮載荷と引張載荷のずれ変位の差は無いと言え る.そして,図-4の関係から,単調載荷と静的両振り試験 のピーク荷重のときのずれ変位が同程度であると言える.

図-5,図-6に単調載荷のスタッド基部におけるせん断力 -軸ひずみ関係と,せん断力-曲げひずみ関係を示す.これ らの図も圧縮載荷と引張載荷の符号を引張側に合わせて描 き,比較する.そして,図-7,図-8に両振り載荷のスタッ ド基部におけるせん断力-軸ひずみ関係と,せん断力-曲げ ひずみ関係を示す.縦軸にスタッド1本当たりのせん断力 を,横軸の軸ひずみはスタッド基部の上下で測定したひずみ の平均,曲げひずみはスタッド基部の上側のひずみから下側 のひずみを引き,2で除したものを示す.また,図-5~図-8はいずれも左側のスタッド(ゲージ1,3)の値を用いた.

図-5,図-6を見てみると,各試験ごとのばらつきがある ものの圧縮載荷と引張載荷の違いはあまり無いといえる.

図-7,図-8を見てみると,せん断力-軸ひずみ関係はほ ぼ重なっているように見えるが,せん断力-曲げひずみ関係 は両振引張の2つが違う挙動を示している.これは,スタッ ド基部のひずみゲージ貼付位置がわずかに違うだけでも,ひ ずみ測定に影響を及ぼしているためであると考えられる.これらの試験はまだ途中の段階であるため,今後残りの試験を行い,その結果を当日発表する予定である.

表-1 静的試験結果

試験の種類	最大せん断 耐荷力	ずれ剛性	降伏せん断 耐荷力
	(kN)	(kN/mm)	(kN)
単調圧縮の平均	52.8	189.0	36.3
単調引張の平均	53.2	163.9	36.8
両振圧縮1	55.0	186.8	35.1
両振引張の平均	59.5	168.4	37.7

5. まとめ

現段階では,スタッドの基部にひずみゲージを貼付し,単 調増加の圧縮載荷状態と引張載荷状態,そして両振り状態に おけるひずみ応答に着目して検討した.しかし,両振り載荷 状態の試験結果が少ない上,片振り載荷状態での試験をまだ 行っていないので,各載荷状態での違いを確認する必要があ る.今後は片振り,両振り載荷状態で静的試験を行い,その 結果を当日発表する予定である.

また,単調載荷では圧縮載荷時と引張載荷時を比べるとず れ変位に違いが見られず,軸ひずみ,曲げひずみも同程度で あることが分かった.これらの試験に加えて,片振り載荷状 態の圧縮載荷と引張載荷の試験も行い,違いを比較していく 予定である.

参考文献

- 1) 木下幸治,中島章典他:両振りおよび片振り載荷状態の スタッド応力伝達性状と疲労強度,土木学会第57回年 次学術講演会,I-365,2002.9.
- 2) 社団法人日本鋼構造協会:頭つきスタッドの押抜き試験法(案)とスタッドに関する研究の現状,JSSCテクニカルレポート,No.35,1996.11.