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1. Introduction

A new method for failure analysis of structures such as
reinforced concrete (RC) and/or steel structures is
proposed. For example in case of RC structures, concrete
is modeled as an assembly of distinct elements made by
dividing the concrete virtually. These elements are
connected by distributed springs in both normal and
tangential directions. The reinforcement bars are modeled
as continuous springs connecting elements together.
Local failure of concrete is modeled by failure of springs
connecting elements when reaching critical principal
stress. The accuracy of the model was checked in the
range before rigid body motion starts). This paper
introduces a new technique to deal with post failure
behavior of structure such as a process of change of
structural behavior from continuum state to perfectly
discrete state after total failure.

2. Element formulation

We assume that the two elements shown in Fig. 1 are
connected by distributed normal and shear springs at
contact points. Each pair of springs fully represent
deformation and failure of a certain area. The formulation
and results of the element before rigid body motion stage
were introduced in Ref. (1) and it was proved that the
method could determine deformations and detect the
initiation and propagation of cracks. To develop the
methodology for post failure analysis, the following steps
are proposed.
The general equation of motion is:

[M][a0]+ [c][aU]+ [K][AU]-Af®) + R, + R (1)
Where [M] is mass matrix, [C] is damping matrix, [K] is
nonlinear stiffness matrix, Af(t) is incremental applied
load vector, [AU] is incremental displacement vector and

[AU Jand [ AU ] are incremental velocity and acceleration
vectors, respectively. The term, R, is residual force
vector due to cracking-or incompatibility between strains
and stresses at the spring location, while Rg is residual
forces due to geometrical changes of the structure during
loading. In this technique, we donot have to determine
the geometrical stiffness matrix resulting in making the
method general and applicable for any case of loading or
structure type. The method is applied using the following
steps:

1. Assume that R, and Rg are zeros and solve the
equation to get incremental displacement. Newmark
Beta method® is used for accurate determination of
displacements.

2. Calculate incremental and
accelerations.

3. Modify the geometry of the structure according to the
calculated incremental displacements.

total velocities and

4. Modify the direction of spring force vectors according
to the new element configuration.

5. Check the situation of cracking and calculate the
material residuals load vector R,

6. Calculate the element force vector from surrounding
springs of each element F.

7. Calculate the geometrical residuals around each
element from the equation below

R, = £)-M][U]- [C][v]-F, )
Equation (2) above means that the geometrical
residuals account for the incompatibility between
external applied forces and internal forces, damping
and inertia forces due to the geometrical changes
during analysis. Small deformations are assumed
during each increment.

8. Calculate the stiffness matrix for the structure in the
new configuration considering stiffness changes at
each spring location due to cracking or yield of
reinforcement.

9. Apply again a new load increment and repeat the
whole procedure.

Residuals calculated from the previous increment can be

incorporated in solution of Eq. (1) 1o reduce the time of

calculation.

3. Numerical results

To check the accuracy of the newly proposed method,
large deformation analyses of three case studies are
introduced.

The first case is harmonic motion of a bar under its
own weight. The bar configuration and results are shown
in Fig. 2. Two different initial excitation angles were
used (0,=0.05 and 0.3 rad). The result of small excitation
angle was compared with the theoretical one. The
calculated X-displacement is almost the same as the one
obtained from theoretical kinematics.

The second case is also harmonic motion of a "L"
shaped bar under its own weight. The bar configuration
and results are shown in Fig. 3. It can be shown that the
bar starts oscillation around the stability position.
Oscillation reduces gradually and finally stops at the
equilibrium position. The simulated angle of final
stability is the same as the calculated one from theory.

Those two analyses show that the rigid body motion of
the structure can be simulated and the final equilibrium
position can also be reached.

The third example shows the time history of failure
process of a single bay RC frame. The frame is supported
by hinged bearing (left) and hinged roller bearing (right).
A concentrated load is applied at the center of the beam of
the frame. The frame shape, dimensions, loading
conditions and deformations under the applied load are



shown in Figs. 4 and 5. The failure process can be

summarized as follows:

1. Cracking starts from the center of the beam.

2. Reinforcement bars yield in the center of the beam.

3. Steel bars cut off after yield.

4. Refering to Fig. 5, displacements drastically increase
after 0.7 seconds because of failure of reinforcement
bars. At the same time, the structure begins unstable
dynamic motion.

5. Tension cracks appear at the left connection first,
because of the rigid body motion restriction caused by
the hinge.

6. Tension cracks appear at the right"connection together
with motion of the roller.

7. The structural members lose curvature and moves as
three rigid bodies in the space.

4. Conclusions

In this study, a new technique was developed by
which structure behavior can be followed during loading
till complete failure. The failure process can be simulated
for elastic region, nonlinear region, and even after
separation of structural members. At this moment, the
main limitation of the model is that the collision effects
are not taken into account. However, research is ongoing
to consider the collision effects in the model.
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Fig. 2 Harmonic motion of a rigid bar under
own weight and initial excitation.
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Fig.3 Harmonic motion of a rigid "L" bar under
its own weight. Damping ratio is 4%.

Fig. 4 Deformed shape and failure pattern of
a hinged-roller RC frame
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Fig.5 Load, vertical and horizontal displacement
at the loading point vs. time
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