プレキャスト部材に用いる鉄筋継ぎ手法の実証実験

Demonstration Experiment of Rebar Joint Method for Precast Members

(株)砂子組	OE	員	古川 大輔	(Daisuke Furukawa)
(株)砂子組	正	員	西村 友宏	(Tomohiro Nishimura)
(株)砂子組	正	員	長谷川 雅樹	(Masaki Hasegawa)
(株)砂子組	正	員	近藤 里史	(Satoshi Kondo)
(株)砂子組	正	員	田尻 太郎	(Taro Tajiri)

1. はじめに

昨今,国交省では働き方改革により建設業の生産性向 上の改善に向けた取り組みとして、コンクリート工のプ レキャスト化の導入を推進している.その一方で、プレ キャスト製品の採用は、コスト増・設計と現場条件の不 一致・重量により運搬が困難等の理由により、採用への 課題が多い現状にあり、現場打ちコンクリート工の採用 が主流となっている.

また,建設業界においては労働者の高齢化が進む一方, 将来を担う生産労働人口は減少の一途をたどっており, 労働者の減少を生産性の向上により補う必要がある.

以上の背景から,生産性向上を目的とした「新形式鋼 合成プレキャスト部材を用いたボックスカルバートの開 発」を試みた.その内,本論文では側壁部の鉄筋重ね継 手結束において,現場労働力の省力化や施工手間の簡略 化を図るため,結束の省略を目的とした実証実験を試み, その必要性や有効性について記述したものである.

2. 実験概要

2-1. 試験機の解析

実験に先立ち,本開発に係わる各供試体の破断(また は圧壊)荷重を試算し,その最大載荷荷重に耐えうる試 験機の解析を行い,形状を決定する.

写真-1~2 試験機

写真-1~2 に試験機を示す. 試験機は,山留材 H400 で門型に架台を組立て,油圧ジャッキ(1000~3000kN, ストローク 220mm)とロードセル(1000~3000kN)を 用いて,供試体上面に荷重を載荷させる計画として解析 を行った.

解析モデルとして、最大載荷荷重は 2000kN と大きい ことから、門型部の架台は奥行方向に 2 連として 1000kN ずつを作用させる構造とする.次に、図-1 に示 すとおり、山留材の連結はボルト構造、さらに作用力が 上方向であることから、連結部の引張力負担低減として、 火打梁(剛体要素)構造とする. 解析の結果,山留材サイズは H400,連結部のボルト は M22 高力ボルトを使用する.なお,門型部の支間中 央曲げモーメントとボルトへの作用力が大きいことから, 山留材は2段構造とした.解析結果を表-1 に示す.

図-1 解析モデル図

表-1 解析結果一覧(門型部)

昭本市中	解析結果(N/mm2またはkN)		洪 本
照冝垻日	応力度	許容応力度	1佣-方
曲げ引張応力度	38	140	支柱接合部
曲げ圧縮応力度	38	138	"
局部座屈応力度	34	140	"
軸引張応力度	27	140	梁中央部
軸圧縮応力度	17	140	"
せん断応力度	12	140	"
ボルト接合部の最大作用力	496	900	M22(F10T)×4本
·			

2-2. 試験機の製作と計測概要

試験時は、供試体の両側に支点を設け、支間中央部に 鋼製載荷板を持たせて荷重を鉛直載荷させる.これによ り、コンクリート破壊形態の確認と変位・ひずみを計測 し、データ収集を行う.

図-2 試験機断面図

3. 実験ケース

表-2 に実験ケースと図-3 に供試体形状図を示す.供 試体は全 4 ケースあり, CASE-1 は重ね継手を結束, CASE2~3 は重ね継手を未結束, CASE-4 は重ね継手を しない鉄筋コンクリート供試体となる.

また,重ね継手未結束については,重ね継手端部が支 間中央位置のケースと,支間中央位置を外したケースと している.なお,コンクリート設計基準強度は本開発条 件の ock=30N/mm2(弾性係数 2.8×10⁴N/mm2),鉄筋は SD345(弾性係数 2.0×10⁵N/mm2)を使用している.

図-3 供試体詳細図

4. 実験結果

4-1. 計算値の算出

実験に先立ち,鉄筋コンクリート部材の断面計算を行い,部材の弾性域や鉄筋の降伏荷重値を把握した.表-3 に計算結果を示す.

表-3 断面計算結果

中陸とっ	弾性域計算値			鉄筋降伏荷重
実験クーへ	載荷荷重(kN)	応力度	許容応力度	(kN)
CASE-1				
CASE-2	40	σ c=9.3N/mm2	σ ca=10.0N/mm2	100
CASE-3	40	$\tau = 0.14 \text{N/mm2}$	$\tau = 0.53 \text{ M/mm}^2$	130
CASE-4		0.1111/11112		

4-2. 実験結果

図-4~7に各ケースの試験結果と,表-4に破壊形態, 耐荷重,および最大変位をまとめる.

各ケースの試験結果は、ゲージ設置図・クラック図・ 載荷荷重に対する鉄筋ひずみをグラフ化した.

表-4 各ケースの実験結果

実験ケース	破壊形態	耐荷重(kN)	最大変位(mm)
CASE-1:重ね継手結束	曲げ破壊	226.0	16.9
CASE-2:重ね継手未結束①	曲げ破壊	220.7	15.3
CASE-3:重ね継手未結束②	曲げ引張破壊	206.3	12.8
CASE-4:重ね継手無し	せん断破壊	186.0	12.2

令和3年度 土木学会北海道支部 論文報告集 第78号

5. 考察

5-1. 計算値と実験値の重ね継手長検証

実験で使用した供試体の重ね継手長 la は 1000mm で あり,これを重ね継手長の算出式¹⁾に当てはめ,鉄筋 の引張応力をひずみに換算する.

 $la = \sigma sa/4\tau oa \cdot \phi$

- ここで, la : 重ね継手長(1000mm)
 - σsa:鉄筋の引張応力度(N/mm2)
 - toa: コンクリートの付着応力度(1.8N/mm2)
 - φ :鉄筋の直径(29mm)

 σ sa=1000÷29×4×1.8=248N/mm2 となり、これを鉄筋の弾性係数(2.0×10⁵N/mm2)で除すると、計算ひずみは 248N/mm2÷2.0×10⁵=1240 μ となる、次に、各ケースの重ね継手位置の最大ひずみを抽出し、計算ひずみとの比較を行う.

以上を踏まえ,図-8 に計算値と実験値(CASE-1 と CASE-2)との重ね継手長の検証をグラフ化した.

重ね継手長 la=1000mm の計算ひずみに対して,各ケ ースの最大ひずみ値は同様に推移している.鉄筋降伏域 において, CASE-2 では計算ひずみ以上の点(計算ひずみ 1240 µ に対し実験値 1436 µ)があるが,重ね継手範囲で 平均化すると,計算ひずみを下回る(1436+680+91/3=平 均 736 µ). よって, 各ケースの重ね継手長は十分に確 保されていることが検証できた.

なお,重ね継手長の算出式はコンクリートの付着応力 度より求められるため,実験値による最小重ね継手長の 検討までは行わないものとする.

5-2. 鉄筋ひずみの検証

鉄筋ひずみの検証は、各ゲージ位置の供試体幅当たり の引張鉄筋本数に対するひずみを算出し、図-9 に示す とおり載荷荷重 50kN 毎に全ケースをグラフ化した.

各ケースにおいて,鉄筋ひずみに大きな差はなく,ひ ずみ傾向も一致している.但し,CASE-3 については左 右の重ね継手が支間中央に集中しているため(3-I, 3-O, 4-I, 4-O),載荷による鉄筋ひずみが小さい値になった と推察される.

5-3. 計算値と実験値のひずみ検証

載荷荷重40kN(鉄筋弾性域)

表-3 より,鉄筋弾性域の載荷荷重 40kN,鉄筋降伏の 載荷荷重は 130kN であった. この時の応力値をひずみ に換算すると,鉄筋弾性域ひずみ 655 µ,鉄筋降伏ひず み 1725 µ となる. 表-5~6 に,この計算値と実験値(重 ね継手した鉄筋1本あたり)のひずみ検証をまとめた.

鉄筋弾性域ひずみと鉄筋降伏ひずみに対して,各ケースの実験値は小さい値で推移している.また,実験値の 傾向は 5-2 と同様に CASE-3 のひずみが小さい値となっ ていることからも,その妥当性が検証できた.

表-5 ひずみ検証(鉄筋弾性域)

	最大ひずみ(μ)			
夫駅クース	計算値	実験値		
CASE-1:重ね継手結束		260		
CASE-2:重ね継手未結束①	055	290		
CASE-3:重ね継手未結束②	655	142		
CASE-4:重ね継手無し		503		

表-6 ひずみ検証(鉄筋降伏域) 載荷荷重130kN(鉄筋降伏域)

中静上 7	最大ひずみ(μ)		
夫駅グース	計算値	実験値	
CASE-1:重ね継手結束		833	
CASE-2:重ね継手未結束①	1705	867	
CASE-3:重ね継手未結束②	1720	739	
CASE-4:重ね継手無し		1335	

6. まとめ

- ・実験で使用した供試体の重ね継手長は、計算ひずみと 比べても、十分に確保されている結果となった.
- ・重ね継手結束(CASE-1)と未結束(CASE-2)の鉄筋 ひずみの傾向は一致しており,重ね継手未結束におい ても継手性能は確保できている.また,計算値と実験 値のひずみ検証からも,その妥当性が検証できた.
- ・本開発の実用に向けて、今後は鉄筋重ね継手未結束を 含めた、設計および施工指針の策定が課題となる.

参考文献

 道路橋示方書・同解説 Ⅲ コンクリート橋・コン クリート部材編 平成 29 年 11 月 日本道路協会