局所洗堀による橋脚沈下の基礎的水理実験

Hydraulic experiment on pier subsidence by local scouring

北見工業大学 工学部	○学生員	稲垣颯栞(Soushi Inagaki)
北見工業大学 社会環境系	正会員	渡邊康玄(Yasuharu Watanabe)

1. はじめに

平成27年9月関東・東北豪雨,平成28年8月台風第 10号,平成29年7月九州北部豪雨,平成30年7月豪雨, 令和元年9月台風第15号,令和元年10月台風第19号な ど,近年,台風や低気圧による被害が全国各地で発生して いる.その中でも橋梁の被害は復旧に長い時間を要する ことなどから特に多くの人々に影響を与えている.出水 時の橋梁の被災を防ぐためには,橋脚やフーチングの根 入れ深さは極めて重要な項目の一つである.このため,橋 脚周辺の局所洗堀に関する研究が従来から進められてい る.しかし,実際の河川で橋脚沈下の挙動は,濁水によ って観測できず,減水期には埋め戻しが発生するため橋 脚の洗堀機構は正確に明らかになっていない.

橋脚の洗堀機構解明は、今後起こる可能性のある出水 時における落橋などの対策手法の立案や橋脚の根入れ深 さの決定に不可欠な項目である.本研究では、2018年7 月に橋脚の沈下によって被災をした北海道遠軽町で一級 河川湧別川に架かるいわね大橋(橋長 336.6m,全幅員 9.9m) に着目し、橋脚周辺の洗堀機構を解明するための第一歩 として、基礎的な水理実験を行うこととした.橋脚周辺 の局所洗堀に関する既往の実験では橋脚のみを使用して いることがほとんどであるが、実際の橋脚にはフーチン グが設けられている場合が多いことから、本実験ではよ り現実に近い状況を再現することがほとんどであるが、 実際の橋脚にはフーチングが設けられている場合が多い ことから、フーチングも加えた橋脚模型を用いて実験を 行った.

2. 2018年7月の湧別川といわね大橋の被害概要

2018年7月1日から7月5日の5日間にかけて,停滞 する前線と台風7号から変わった温帯低気圧による大雨 が北海道を襲った. 湧別川流域でも約80mm~160mmの降 水量であった.この降雨を含む2018年7月の月降水量が 統計開始以来最大のものとなったアメダス地点は20地 点を超えた¹⁾.この大雨によって北海道オホーツク地方 の湧別川(計画確率年1/100)は確率規模1/15(遠軽地 点基準)の洪水(以降2018年7月出水とする)となった.

写真-1 被災したいわね大橋の橋脚(北海道オホーツ ク総合振興局網走開発建設部提供)

図-1 はその際の流量と水位を表したグラフである²⁾.こ の出水は計画流量と比べて小さな出水であったが,湧別 川のいわね大橋がフーチング下部の河床洗堀による沈下 で橋桁が折れ曲がり,橋脚が破損するという被害を受け た.いわね大橋では1980年以降河床低下が多少観測され ていたが1991年以降は局所的なものを除いて観測され ていない.

2018年7月出水時に北海道開発局網走開発建設部が雨 量の増加に伴って道路異常時パトロールしており,7月4 日午前7時15分の時点では異常が見られなかったが,8 時45分には橋脚の沈下と上部工の損傷が住民から警察 への通報によって確認された³⁾. 写真-1は被災後の橋脚 の写真である.

3. 水理実験に用いた水路と実験条件

3.1 実験水路

実験では長さ7m,幅40cm,高さ30cmの直線可傾斜 水路を使用し、水路の底に約10cmの厚さで後述する粒 径の珪砂を敷いて移動床とした.橋脚の模型は図-2のよ うに上流端から4.9mのところに配置し、観察しやすい ように水路の左岸側の側面にフーチングの側壁が添うよ うに設置した.このため、左右岸方向の流れが側壁の影 響を強く受ける条件となっており、この影響を含んだ実 験となっている.

3.2 実験条件

橋脚周辺の局所洗堀を再現するため,現地と模型の形 状や水深が同一の縮尺となるように設定するとともに, 出水時の無次元掃流力が現地と模型実験で一致するよう に水理量を設定した.

図-2 実験水路の概要

具体的には水路幅や水深,河床材料の粒径を現地の縮尺 1/120 とするとともに,2018 年 7 月出水時の遠軽観測 所でのピーク流量時における無次元掃流力になるように 初期河床勾配を 1/200 とした.実験に用いた河床砂の平 均粒径は 0.7mm である.図-5 にいわね大橋の橋脚模型の 大きさを示す.この条件の実験を Case1 として,勾配を 1/400 としてそれ以外の条件を Case1 と同じとしたもの を Case2,模型の橋脚部分を大きくし,水理量などを Case2 と同じにしたものを Case3 として計 3 種類の実験 を行った.実験の水理条件を表-1,2 に示す.

給水を開始し、水が橋脚の上流端に触れた時点を通水 開始とし、10分ごとに流量を記録するとともに、水路側 壁を通して橋脚周辺の洗堀状況を動画撮影を行った.各 ケースの流量観測結果を図-3,4にそれぞれ示す.なお、 Case3は約30秒で橋脚が倒れたので流量は測定していな いが Case2とほぼ同じ流量である.

表-1	Case1	の実験条件
~ ~ ~		

設定流量 (cm³/s)	水深(cm)	河床 勾配	流速(cm/s)	フルード数	無次元掃流力
7698.7	3.8	1/200	57.7	0.95	0.21

表-2 Case2, Case3の実験条件

設定流量 (cm³/s)	水深(cm)	河床 勾配	流速(cm/s)	フルード数	無次元掃流力
7698.7	3.5	1/400	55.3	0.95	0.09

4. 実験結果

4.1 Case1 の実験結果

写真-2 は通水してからの橋脚模型とその付近の河床 の写真で、水は右から左に流れている.いずれのケース でも常流ではあるものの流れが限界流に近いため反砂堆 が形成された.

Case1 では橋脚の上流端が通水開始から洗堀され始め たが、河床波の峰が通過するたびに埋め戻しが生じてい るため、総じてあまり変化がなかった.ただし、橋脚があ る部分ではフーチングまで到達してはいないが洗堀が多 少確認された.

図-5 橋脚模型の規格

図-6 橋脚寸法変更後の規格

Case1 で河床波の形成による埋め戻しが洗堀の進行を 遅らせていることが考えられたことから勾配を緩くする ことで無次元掃流力を小さくして小規模河床派の影響を 極力抑えた実験を Case2 行った.

図-7 は実験中の河床変化を表したものである.なお, 暖色になるほど時間が経過している.またそれぞれの河 床は変化が大きかった時間を抜粋したものであり,図に 示している以外の時間でも同じような変化が繰り返され ていた.

洗堀深は Casel と比べて深くなり,フーチング上面より深く洗堀された.しかしながらフーチング下端から 0.78cmより低い河床は洗堀されず,橋脚の傾斜や沈下は 確認できなかった..

4.3 Case3 の実験結果

いわね大橋の被災直後の状況を撮影した写真-3 を見 ると、橋脚の上流側に樹木が集積いることが分かる.こ のことから集積した樹木によって橋脚の幅が増大したよ うな状態となったため局所洗堀が進行し、橋脚の沈下に 至ったと推測される.このことから、Case3として模型の 橋脚を横断方向に2倍にして行うこととした.

なお,橋脚の横断方向の長さ以外の橋脚とフーチング の寸法は,変更していない.

図-8 は通水してから橋脚が傾斜・沈下するまでの河床 変化を表したものである.

写真-2 Caselの橋脚模型の様子

写真-3 被災直後のいわね大橋(北海道オホーツク 総合振興局網走開発建設部提供)

通水開始直後から洗堀が開始し,5 秒後にはフーチン グまで到達した.さらに 10 秒後にはフーチング下端より も深くなり,下流側に進行している.そして 15 秒,20 秒 と経過すると洗堀深はあまり深くへは進行はしなくなり フーチング下端の河床を洗堀し始め,洗堀がフーチング の約半分に達した約 30 秒後に右岸側に倒れる結果とな った.

橋脚が左岸側壁に沿って設置したため,実験結果には 側壁の影響が含まれている.この影響について確認する ため,橋脚模型を水路中央に設置して,その影響の確認 実験を行った.橋脚模型の設置個所以外は,Case3と同一 の条件での実験である.

水路の中央に置いた場合は、左岸側に置いたときより も局所洗堀により橋脚模型が倒れるのが早かった.ただ しフーチング下の河床の洗堀については目視することが できなかった.

5. 考察

橋脚部分を倍にした状態で洗堀が進行し倒れたこと から,水に触れる面積が大きいほど洗堀は進みやすいこ とがわかる.これは流水に対する投影面積が大きいほど 潜り込む流れが大きくなるためと考えられる.

また,右岸側に倒れたのはフーチング下の洗堀に伴う 支持力低下が右岸側のほうが大きかったものと推測され る.

さらに、通水直後の状況を映した写真-4と通水から7秒 後で洗堀がフーチング下端に到達した時の状況を映した 写真-5とを見比べてみると、フーチングに到達してから 洗堀の幅が横断方向に大きくなっていることがわかる. また、その後の洗堀がフーチング到達前と比べて遅くな っている.これは、より広い範囲が.洗堀を受けることに なるため、洗堀に時間をより多く要するためと考えられ る.

また,水路中央に橋脚模型を設置した場合に倒れるの が早かった理由として側壁近傍に置いた場合,側壁の影 響により局所洗掘の原因となる潜り込みの流れが弱くな ったものと考えられる.

6. おわりに

本論文では橋脚の洗堀機構の解明を目的にフーチン グを含めた橋脚模型を用いて定流実験を行った.結果と して洗堀を起こすことができ、上流側の橋脚部が集中的 に洗堀されることが分かった.また、洗堀速度がフーチン グ到達前と後で異なることから、フーチングは橋を支え る以外にも、洗堀の進行を遅らせる機能を有するものの、 フーチング下部の洗掘が橋脚の沈下に大きく関係するこ とから、さらなる詳細な検討が必要と考えられる.

今回は洗堀の状況を観測するために左岸側の側壁に接 する形で模型を設置して実験を実施した. 側壁の影響を 受けない位置での実験を実施し,倒れ方や洗堀のされ方 をより詳細に把握する必要がある.

また,水路の側壁から観察したため,最も洗堀深が大き いと思われる橋脚模型の中心の下端より深い河床が観測 できていない.さらに,河床高が模型下端より深い場所で

図-8 Case3の河床変化

最大洗堀深は約 2.5cm

写真-4 通水開始直後の橋脚の様子

写真-5 洗堀がフーチング下端に到達した際の橋脚 の様子(通水から約7秒後)

詳細な実験を行い,洗堀が進行する条件等を確認する必 要がある.

参考文献

- 気象庁札幌管区気象台:停滞前線による大雨(2018 年7月), https://www.jma-net.go.jp/sapporo/t enki/kikou/tokucho/kencho_summer2018.html(閲覧 日:2021年12月9日)
- 国土交通省、国土交通省水文水質データベース、htt p://www1.river.go.jp/,(閲覧日:2021年12月9日)
- 株式会社鋼構造出版,道路構造物ジャーナルNET:オホーツク総合振興局網走建設管理部いわね大橋復旧工事の軌跡,https://kozobutsu-hozen-journal.net/walks/detail.php?id=224&page=1(閲覧日:2021年10月11日)