泡沫のバースティング過程に関する基礎的研究

Fundamental study on the bubbles bursting process

北海道大学工学部4年	○学生会員	七澤梨花	(Rinka Nanasawa)
北海道大学院工学研究院	正会員	渡部靖憲	(Yasunori Watanabe)

1. はじめに

砕波が混入させた大量の気泡は水面へ浮上後、バース ティングを経て消滅する。大気中へ放出される海洋性エ アロゾルの主因がこのバースティングであると考えられ、 これを通した大気と海洋の熱及び水分の輸送の定量化が 海洋の局所気象海象予測の観点で重要と考えられている。

Wnetal(1984)は海洋上の飛沫サイズの光学観測を行い、 経験的サイズ分布モデルを提案している一方、砕波混入 気泡サイズとの関係及び飛沫発生の力学機構が不明であ り、さらなる物理的検討が必要と考える。

H.Lhuissier and E.Villermaux(2011)は泡沫のバースティ ングを発生させる物理機構を検討し、気泡フィルムの崩 壊過程及び放出飛沫の確率を提示した一方、大気・海洋 間蒸散を通した熱輸送を考える上で最も重要な飛沫サイ ズ分布への言及はない。一方、H.Lhuissier and E.Villermaux(2011)の説明によると、泡沫上部に形成され るフィルムの崩壊速度はいわゆる Taylor-Culick 速度で決 定され、これは液滴が静水面に衝突して発生するクラウ ンスプラッシュを通したクラウンウォールのリムのリト ラクション過程と類似する。即ち、バースティングによ る飛沫生成は、クラウンスプラッシュにおけるリムの不 安定性による液滴への分裂過程によって説明できる可能 性がある。

本研究は、浮上泡沫のバースティング過程の微視的可 視化実験を通して、フィルムの崩壊パターン並びに速度 の混入気泡径依存性、海面活性依存性を調査し、膜面の 不安定性について議論するものである。

2. 実験方法

気泡のバースティングの過程を水槽を真下から LED で照らし気液界面の気泡の影を高速カメラを用いて真上 から撮影するバックライト法による実験を行った。10 cm四方の水槽の底に注射針を付けたゴムチューブを貼り 付けて繋いだ注射器から空気を注入し、気泡を発生させ た。(図-1)

単独の気泡のバースティングの撮影は、非常に微小か つ高速であるため、高速カメラに顕微鏡レンズを取り付 け、撮影速度37500fps、シャッタースピード1/250000の ハイスピードで撮影した。リムの速度と気泡径依存性を 調べるために、直径0.30mm(30G)、0.70mm(22G)の注射 針とゴムチューブ(直径4 mm)の3種類の条件下で可視化 実験を行った。同様にリムの速度と海面活性依存性を調 べるために実験に使用する溶液を精製水と人工海水 SEALIFE(濃度3.5%)の2種類条件下で可視化実験を行っ た。

その後、撮影した写真を MATLAB を通してキャリブ レーションを行い、その画像の気泡のバースティングの 瞬間のリムのピクセル位置からの変化をフレームごとに 求めてフィルムの崩壊速度を求めた。しかしながら人工 海水を使用して0.30mmの注射針の条件下での撮影では、 気泡が約 0.51mm と現在のキャリブレーションの範囲で は大きすぎてフィルムの崩壊過程が詳細に見られなかっ たためデータの個数が少ない。

図-1. バースティング過程の微視的可視化実験

3. 実験結果

気泡のバースティング過程の微視的可視化実験を行い、 1 フレームごとの気泡のバースティング過程の様子を 1 フレームごとに並べた。(図-2)

図-2. バースティング過程の様子(0.30×12 mm、精製水) 図-2A から B にかけてフィルムの中心以外の場所か ら孔が開行く様子が確認された。図-2B,C,D では均等 にリムが広がっていく一方、図-2E,F,G の画像からは数 か所で膜の厚さが不規則なリムが現れて、孔の拡大と共 に突出したリムが発達するリトラクションが確認された。 気泡のフィルム崩壊に伴い表面張力波が液面下のフィル ムまで伝播し、フィルムの最下部で波が集中する様子が みられた。

リムの速度と気泡径依存性の関係を表したものが図ー 3(a),(b)である。図-3(a)では直径 0.30mm(30G)の注射針 で混入される気泡は径が約0.22 cm、直径0.70mm(22G)の 注射針の気泡は径が約 0.39 cm、ゴムチューブ(直径 4 mm) の気泡は径が約 0.56 cmにプロットされている。図-3(b) では直径 0.30mm(30G)の注射針で混入される気泡は径が 約 0.051 cm、直径 0.70mm(22G)の注射針の気泡は径が約 0.38 cm、ゴムチューブ(直径 4 mm)の気泡は径が約 0.55 cm 付近にプロットされている。図-3(a)からは気泡の径が 大きくなるほどリムの速度が低下すること及び分散が小 さくなると分かる。図 3-(b)からも同様に直径 0.70mm(22G)の注射針の気泡とゴムチューブ(直径 4 mm) の気泡は気泡径が大きくなるほどリムの速度が低下する こと及び分散が小さくなると確認された。しかしながら、 直径 0.30mm(30G)の注射針で混入される気泡は海面活性 の影響により気泡の径が小さくなり、本実験で行ったキ ャリブレーションの範囲では大きすぎてフィルムの崩壊 過程が詳細に見られず正確なデータが得られなかったた め、規則性が見られなかった。

図-3(a).気泡の径とリムの速度の関係(精製水)

図-3(b).気泡の径とリムの速度の関係 (人工海水)

直径 0.70mm(22G)の注射針の気泡では、人工海水と 精製水で気泡径のばらつきに差があり、出現する気泡径 が大きい精製水の条件下では人工海水と比較してリムの 速度が低下していることがわかる。ゴムチューブ(直径4 mm)の気泡では、直径 0.70mm(22G)の注射針のときと同 様に精製水のときの方が気泡径が大きいと分かる。また、 同じ気泡径の点で比較すると人工海水の条件下では同じ 気泡径でもリムの速度が小さくなっていることがわかる。

図-4(a).精製水と人工海水の比較 (直径 0.70mm) (青丸が精製水、オレンジ丸が人工海水)

図-4(b).精製水と人工海水の比較(直径4mm) (青丸が精製水、オレンジ丸が人工海水)

4. クラウンスプラッシュ

気泡がバースティングする過程では、表面張力の不安 定により膜の厚さが異なる突出したリムが形成され、フ ィルムを引っ張り巻き込みながら孔が拡張し、突出した リムは時間経過とともに発達していく。これは液滴が静 水面に衝突して発生するクラウンスプラッシュを通した クラウンウォールのリムがクラウンウォールを巻き込み 突出したリムが下がっていくリトラクション過程と類似 していることがわかる。

リトラクションは質量保存則と運動量保存則から、次の式(1),(2)で表すことができる。

$$a\frac{\partial a}{\partial t} + \frac{a^2}{2}\frac{\partial ur}{\partial x} + ura\frac{\partial a}{\partial x} = -\frac{h}{2\pi}(vf - vr) \qquad (1)$$

 $\rho ha^2 \left(\frac{\partial ur}{\partial t} + \frac{\partial ur}{\partial x} \right) =$

$$\pi \gamma \frac{\partial a}{\partial x} + \pi \frac{\partial^2 a}{\partial x^2} + 2\gamma \frac{\partial \eta}{\partial x} - \rho hur(vf - vr) \qquad (2)$$

リトラクションの様子をモデル化すると図-5 が得られる。実際の気泡のバースティングではこのリムが円環状につながっており、その場合の検討が必要である。

図-5 リトラクションのモデル

5. 輝度によるフィルムの崩壊過程の解析

今回の実験では、キャリブレーション後のピクセルの 座標からバースティング過程のリムの動きを追い、フィ ルムの崩壊速度を導出した。一方、撮影画像の輝度差分 からリムの位置を測ることが可能である。図-6は、気 泡がバースティングする前の画像と輝度の差を取ったも のであり、それぞれ図-2のA~Hと対応している。

画像の主に黄色とオレンジの帯状に見える部分が泡沫 のリムであり、図-6E,F,Gで見られる特に明るい黄色い 部分が突出したリム出るとわかる。輝度を用いたこの画 像解析の場合、本実験で導出したリムの速度だけではな く、リムの厚さまで求めることが可能である。

図-6輝度によるバースティング過程(図-2と同様) 6. まとめ

海洋性エアロゾルの主因と考えられる気泡のバーステ ィングの量的分析を行うために気泡の可視化実験を行っ た。気泡のバースティングへの混入気泡径依存性、海面 活性依存性を調べるために条件を変えて実験を実施して、 気泡の径が大きくなるとフィルムの崩壊速度が遅くなる という結果が得られた。また、海面活性の影響により精 製水に比べて出現する気泡の径が小さくなった。

今後、クラウンスプラッシュのリトラクションを気泡 のバースティングに適用してバースティング飛沫の量的 分析に役立てていく。また、輝度を用いた画像解析でリ ムの速度、厚さを調べ更に気泡径依存性、海面活性依存 性について解明していきたいと考えている。

参考文献

1)H.Lhuissier and E.Villermaux. Bursting bubble aerosols,

pp5-44,2011

2) Watanabe Y, Ingram DM. 2015 Transverse instabilities of ascending planar jets formed by wave impacts on vertical walls.