異方性積層板の厚板解析における Region-wise ZIG-ZAG 理論

の計算効率について

Computational efficiency of Region-wise ZIG-ZAG theory for thick plate analysis of anisotropic laminated plates.

函館工業高等専門学校	学生員	佐野凌希 (Ryoki SANO)
函館工業高等専門学校	正 員	渡辺 力 (Chikara WATANABE)

1. まえがき

近年,接着工法による既設構造物の補修・補強におい て,繊維強化プラスチック(FRP)などの複合材料が盛 んに用いられているが,異方性積層板として取り扱われ る複合材料に対して有効な構造解析手法や解析理論は未 だ確立されていない.繊維強化プラスチック(FRP)な どの異方性積層板では,板厚比が大きくなると ZIG-ZAG 変位の影響が顕著に現れ,従来の等価単層理論で は高次理論を用いても精度が悪くなる.そのため,ZIG-ZAG 理論や Layer-wise 理論などの様々な理論(数学モ デル)の研究が行われている.

複合材料で補強された鋼やコンクリート構造に ZIG-ZAG 理論を適用するために改良 ZIG-ZAG 理論 ¹⁾が開発 されている.この改良 ZIG-ZAG 理論は, Refined ZIG-ZAG 理論を改良したもので,等方性平板に用いても精度 の良い解が得られる.さらに,この理論を剥離解析やサ ンドイッチ構造に適用するために, Region-wise ZIG-ZAG 理論の開発を進めている²⁾.この理論では,積層構造を 幾つかの領域に分け,その領域境界と領域内部に自由度 を持たせる.領域内部の ZIG-ZAG 理論を用いている.

本研究では,Region-wise ZIG-ZAG 理論を種々の積層 状態の異方性積層板の曲げ解析に適用し,変位と応力の 精度を検証するとともに,理論の計算効率を調べること を目的としている.

本報告では、Region-wise ZIG-ZAG 理論を 7 ケース (3 層~12 層)の異方性積層板の曲げ解析に用いて、厳密解 に対する変位と応力の精度を調べ、Layer-wise 理論と計算 効率(未知自由度数)を比較した結果について報告する.

2. Region-wise ZIG-ZAG 理論

板厚 h の異方性積層板やサンドイッチ板を、図-1 に 示すように板厚方向に対して N_R 個の領域に分ける.

領域 r の領域境界の z 座標値を z_r, z_{r+1} とし、領域内 の層数を N_r , 領域の厚さを h_r , 第 k 層目の厚さを $h^{r(k)}$ とする.また、領域内に変域 [-1, 1] の正規化座標 ζ^r を設ける.

$$\zeta^{r} = \frac{2}{h^{r}} (z - z_{m}^{r}) , \qquad z_{m}^{r} = (z_{r+1} + z_{r})/2$$
(1)

ここに,式(1)の z_m^r は領域rの中央点のz座標値である.

2.1 変位場

Region-wise ZIG-ZAG 理論では,領域 *r* 第 *k* 層の変位 を次式で与える.

$$u^{r(k)} = f_0^r u_r + f_1^r u_{r+1} + \sum_{s=1}^{p_u^r} \phi_{us}^{r(k)} u_s^r$$

$$v^{r(k)} = f_0^r v_r + f_1^r v_{r+1} + \sum_{s=1}^{p_v^r} \phi_{vs}^{r(k)} v_s^r$$

$$w^{r(k)} = f_0^r w_r + f_1^r w_{r+1} + \sum_{s=1}^{p_w^r} \phi_{ws}^{r(k)} w_s^r$$
(2)

ここに、式(2)の右辺第 1 項と第 2 項が領域境界変位の項 で、第 3 項が領域内部変位の項である. u_r, u_{r+1} などは 図-1 に示す領域 r の境界変位で、 u_s^r, v_s^r, w_s^r は領域 r の 内部変位を表す. s は板厚方向(ζ^r 方向)の補間関数 (多項式)の次数を表し、 p_u^r, p_v^r, p_w^r は各変位成分の 領域 r での展開次数を表す.

領域内部変位の項(式(2)の右辺第3項)において, s=1の場合がZIG-ZAG項で、 $\phi_{u1}^{r(k)}, \phi_{v1}^{r(k)}, \phi_{w1}^{r(k)}$ が領域ZIG-ZAG関数、 u_1^r, v_1^r, w_1^r が領域ZIG-ZAG変位である. また、s ≥ 2の場合が領域高次変位の項で、 u_s^r, v_s^r, w_s^r (s ≥ 2)は領域内部変位の高次項である.

2.2 補間関数と領域 ZIG-ZAG 関数

(1) 領域境界

領域境界変位の補間関数には次式を用いる.

$$f_0^r = \frac{1}{2}(1-\zeta^r), \qquad f_1^r = \frac{1}{2}(1+\zeta^r)$$
(3)

(2) 領域内部 s=1 (領域 ZIG-ZAG 関数)

領域内部変位の項 s=1 の関数には,次の領域 ZIG-ZAG 関数を用いる.この領域 ZIG-ZAG 関数は,改良 ZIG-ZAG 関数において領域下端の関数値がゼロとなる ように補正を行ったもので,領域上端と領域下端で関数 値はゼロとなる.

$$\phi_{u1}^{r(k)} = \left(\begin{array}{c} \beta_{u}^{r(k)} - F_{u}^{r}/2 \end{array} \right) \zeta^{r} + a_{u}^{r(k)} \\ \phi_{v1}^{r(k)} = \left(\begin{array}{c} \beta_{v}^{r(k)} - F_{v}^{r}/2 \end{array} \right) \zeta^{r} + a_{v}^{r(k)} \\ \phi_{w1}^{r(k)} = \left(\begin{array}{c} \beta_{w}^{r(k)} - F_{w}^{r}/2 \end{array} \right) \zeta^{r} + a_{w}^{r(k)} \\ \end{array}$$

$$(4)$$

ここに,

$$a_{u}^{r(k)} = (\beta_{u}^{r(1)} - F_{u}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{u}^{r(i-1)} - \beta_{u}^{r(i)})$$

図-1 Region-wise ZIG-ZAG 理論の概念

$$a_{v}^{r(k)} = (\beta_{v}^{r(1)} - F_{v}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{v}^{r(i-1)} - \beta_{v}^{r(i)})$$

$$a_{w}^{r(k)} = (\beta_{w}^{r(1)} - F_{w}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{w}^{r(i-1)} - \beta_{w}^{r(i)})$$
(5)

式(4),(5) の $\beta_u^{r(k)}, \beta_v^{r(k)}, \beta_w^{r(k)}$ は領域 ZIG-ZAG 関数の勾配 である.

(3) 領域内部 s≧2

領域内部変位の項 $s \ge 2$ の補間関数には、領域上下端 で関数値がゼロの条件を満たすハイアラーキ多項式を用 いる. Layer-wise 理論では補間関数に Lagrange 多項式が 用いられるが、このハイアラーキ多項式は数値計算が容 易で、この多項式を用いた剛性行列の条件数は Lagrange 多項式を用いた場合に比べ小さく、消去演算での桁落ち が少なくなる.

$$\phi_{us}^r = \phi_{vs}^r = \phi_{ws}^r$$

$$= \left(1 - (\zeta^r)^2\right) (\zeta^r)^{s-2} \quad (s \ge 2) \quad (6)$$

なお,式(6)の関数は領域r内において層番号kに依存しないので,右上添字(k)を省略している.

3. 数值計算例

3.1 計算モデル

計算モデルは,図-2に示す長さ*a*,幅*b*,板厚*h*の周 辺単純支持された異方性積層板で,形状比を*a/b*=1,板 厚比を*h/b*=0.3 とし,次の7ケースの積層板を計算する.

- 1) モデルS3;対称3層積層板 [0/90°/0]
- 2) モデル S4;対称4層積層板 [0/90°]_S
- 3) モデル AS4; 逆対称 4 層積層板 $[0/90^{\circ}]_2$
- 4) モデル S6; 対称 6 層積層板 $[0/90^{\circ}/0]_2$

5) モデル AS6; 逆対称6層積層板 [0/90°]3

6) モデル S12; 対称 12 層積層板 [0/90°] 35

7) モデル AS12; 逆対称 12 層積層板 [0/90°]6

各層の厚さは、全て同じとし、材料定数には次の値を用 いる.

$$E_1 / E_2 = 25$$
, $E_3 = E_2$, $G_{12} = G_{13} = 0.5E_2$

$$G_{23} = 0.2E_2 , \qquad v_{12} = v_{13} = v_{23} = 0.25$$

荷重は, 図-2 に示すように板上縁に正弦荷重を満載 する.変位と応力は図-3 の図中に示す評価点で評価し, 次式を用いて無次元化して表す.

$$\widetilde{u} = \frac{uE_2h^3}{q_0b^4}, \quad \widetilde{v} = \frac{vE_2h^3}{q_0b^4}, \quad \widetilde{w} = \frac{wE_2h^3}{q_0b^4} \\
\widetilde{\sigma}_x = \frac{\sigma_xh^2}{q_0b^2}, \quad \widetilde{\sigma}_y = \frac{\sigma_yh^2}{q_0b^2}, \quad \widetilde{\sigma}_z = \frac{\sigma_z}{q_0} \\
\widetilde{\tau}_{xy} = \frac{\tau_{xy}h^2}{q_0b^2}, \quad \widetilde{\tau}_{yz} = \frac{\tau_{yz}h}{q_0b}, \quad \widetilde{\tau}_{xz} = \frac{\tau_{xz}h}{q_0b}$$
(7)

3.2 精度と収束性

表-1 にモデル S4(対称 4 層積層板),表-2 にモデル AS4(逆対称 4 層積層板)における変位の 3 成分と応力 の 5 成分の厳密解³に対する誤差(%)と,未知自由度

N_R	р	и	v	w	σ_x	σ_y	τ_{xy}	$ au_{yz}^*$	$\tau^*_{_{XZ}}$	DOF
1	0	- 53.71	- 39.88	- 22.61	- 52.65	- 17.96	-43.82	-3.88	30.98	6
	1	- 17.16	- 9.48	- 3.88	- 16.21	- 12.29	-11.66	6.59	- 1.31	9
	2	- 11.24	-6.70	- 3.60	- 10.33	- 10.91	- 7.99	6.51	- 1.41	12
	3	- 1.51	-2.11	- 1.09	- 0.94	-4.52	- 1.94	4.27	- 1.53	15
	4	- 1.39	- 1.58	-0.95	- 1.35	- 4.89	- 1.52	4.34	-1.32	18
	5	-0.12	- 0.15	-0.18	-0.17	- 1.17	- 0.14	0.36	- 0.19	21
2	0	- 49.64	- 39.53	-21.86	-48.26	- 17.66	-42.41	- 3.99	31.65	9
	1	- 11.77	- 6.73	- 3.59	- 11.03	- 11.50	- 8.16	6.76	- 1.07	15
	2	- 3.22	- 1.15	- 0.81	- 2.62	-1.34	- 1.74	-0.84	-0.82	21
	3	- 0.49	-0.54	- 0.33	- 0.45	- 1.10	- 0.53	-0.39	-0.52	27
	4	-0.07	- 0.24	-0.12	-0.06	- 0.49	- 0.19	-0.02	- 0.21	33
	5	-0.02	-0.10	-0.05	0.01	-0.20	-0.08	0.01	-0.08	39
LW	1	- 11.77	- 6.73	- 3.59	-11.03	- 11.50	- 8.16	- 22.19 †	-2.43 †	15
	2	- 1.11	-0.68	-0.44	-0.95	- 0.93	-0.80	13.09 †	-0.15 †	27
	3	- 0.01	-0.005	-0.003	0.03	0.02	-0.01	- 1.42 †	-0.04 †	39
厳密解 ³⁾		2.923817 ($\widetilde{u} \times 1000$)	7.339311 $(\tilde{v} \times 1000)$	2.731683 (w×100)	$\frac{-8.148298}{(\widetilde{\sigma}_x \times 10)}$	$\begin{array}{c} -7.150071 \\ (\widetilde{\sigma}_y \times 10) \end{array}$	5.373761 $(\tilde{\tau}_{xy} \times 100)$	$\begin{array}{c} 3.022959 \\ (\widetilde{\tau}_{yz} \times 10) \end{array}$	$\begin{array}{c} 2.005407 \\ (\widetilde{\tau}_{xz} \times 10) \end{array}$	
評価点		D, <i>z</i> =- <i>h</i> /2	C, $z = -h/2$	A, $z = -h/2$	A, $z = -h/2$	A,2層目上	B, $z = -h/2$	C, z=0	D, z=0	_

表-1 対称4層積層板[0/90°]_Sの変位と応力の誤差 (h/b=3/10) (%)

† Layer-wise 理論の面外せん断応力は層境界の平均値を用いている.

表-2 逆対称4層積層板[0/90°]。の変位と応力の誤差 (h/b=3/10) (%)

				-				· · · ·		
N_R	р	и	v	w	σ_x	σ_y	τ_{xy}	$ au_{yz}^*$	$ au_{xz}^*$	DOF
1	0	- 41.92	- 62.15	- 28.59	-42.18	- 33.49	- 56.16	25.48	24.84	6
	1	- 16.10	-21.17	-4.24	- 15.63	- 4.48	- 19.67	1.19	1.04	9
	2	- 14.23	- 14.58	- 3.97	- 13.48	- 1.09	- 14.48	0.75	1.25	12
	3	- 3.62	0.97	- 0.94	- 2.89	- 7.68	- 0.39	-0.60	-0.20	15
	4	- 0.49	0.89	-0.43	-0.48	-4.42	0.48	- 0.63	-0.36	18
	5	-0.32	0.45	-0.40	- 0.32	-4.60	0.22	-0.32	-0.26	21
2	0	- 52.62	- 38.21	-23.24	- 51.13	- 14.17	- 42.48	18.98	22.96	9
	1	- 11.38	- 5.65	- 2.91	- 10.69	- 10.19	- 7.35	0.56	0.89	15
	2	- 3.377	- 1.20	-0.88	- 2.81	-0.90	- 1.84	-1.24	- 0.99	21
	3	- 0.49	-0.55	-0.33	- 0.43	-1.23	- 0.53	- 0.49	- 0.49	27
	4	-0.05	- 0.23	-0.10	-0.05	-0.53	- 0.18	-0.14	-0.14	33
	5	- 0.01	- 0.09	-0.04	0.02	-0.22	-0.07	-0.05	-0.05	39
LW	1	- 11.38	- 5.65	- 2.91	- 10.69	- 10.19	- 7.35	- 5.17 †	-7.60 †	15
	2	- 1.15	- 0.73	-0.48	-0.98	-1.05	-0.86	11.84 †	10.59 †	27
	3	- 0.01	-0.004	-0.002	0.03	0.02	- 0.01	-0.57 †	-0.54 †	39
厳密	解 ³⁾	3.053017 ($\widetilde{u} \times 1000$)	7.251844 $(\tilde{v} \times 1000)$	2.780261 ($\widetilde{w} \times 100$)	$-8.485094 \\ (\tilde{\sigma}_{x} \times 10)$	$-6.582170 \\ (\tilde{\sigma}_y \times 10)$	5.395613 $(\tilde{\tau}_{xy} \times 100)$	$\begin{array}{c} 2.173244 \\ (\widetilde{\tau}_{yz} \times 10) \end{array}$	$\begin{array}{c} 2.300846 \\ (\widetilde{\tau}_{xz} \times 10) \end{array}$	_
評価点		D, <i>z</i> =- <i>h</i> /2	C, $z = -h/2$	A, $z = -h/2$	A, $z = -h/2$	A,2層目上	B, $z = -h/2$	C, z=0	D, z=0	_

† Layer-wise 理論の面外せん断応力は層境界の平均値を用いている.

数 (DOF) を示している. 領域数は $N_R = 1,2$ の場合を計算 し,式(2)の展開次数は各変位成分で同じ $p'_u = p'_v = p'_w \equiv p$ として $p=0\sim5$ まで採っている. また,比較のために p 次 補間する Layer-wise 理論 (LW)の解⁴も示している.

表-1 の対称 4 層積層板では,領域数 N_R =1 のときで も解の収束性は良好である. p=0 では誤差が大きくなっ ているが, p=1 として ZIG-ZAG 項を加えると 精度が大 きく改善され, p=5 (21DOF)まで次数を増加させると, σ_y では 1%程度,その他の変位と応力では1%以下 の誤差となっている. N_R =2 のときには収束性がさら に改善され, p=3 (27DOF) まで次数を増加させること で誤差 1%程度の解を計算できる. 一方, Layer-wise 理論 では, 次数 p=2 では面外せん断応力の誤差が大きく, 誤 差を 1%程度とするためには p=3 を用いる必要がある. Region-wise ZIG-ZAG 理論 ($N_R=1$, p=5, 21DOF) では, Layer-wise 理論 (p=3, 39DOF) の 54%程度の未知自由度 数で誤差 1%程度の解を計算することができている.

積層順序を変えた表-2 の逆対称 4 層積層板においては, N_R =1 のときには p=4 (18DOF)を用いれば, σ_y を除 く変位と応力の誤差は 1%以下となっている. N_R =2 の ときには p=3 (27DOF) を用いることで誤差 1%程度 の解を計算できる.一方, Layer-wise 理論では, 誤差を 1%程度とするためには p=3 (DOF=39) を用いる必要があ り, Region-wise ZIG-ZAG 理論 ($N_R=1$, p=4, 18DOF) では, Layer-wise 理論 (p=3, 39DOF) の 46%程度の未知 自由度数で誤差 1%程度の解を計算することができる.

3.3 Layer-wise 理論との計算効率の比較

ここでは、変位と応力の厳密解に対する誤差を 1% 程度とするための未知自由度数を Layer-wise 理論と比 較し、Region-wise ZIG-ZAG 理論の計算効率について 考察する.

図-3 は、7 つの計算モデルについて、変位の3 成分と 応力の5 成分の厳密解に対する誤差を1%程度とするた めの未知自由度数を Layer-wise 理論と比較したもので、 横軸には各計算モデルを、縦軸には未知自由度数

(DOF) を示している.変位と応力の評価点については, 表-1,2 の下段に示しており,各成分の最大値の厳密解に 対する誤差を評価している.線種は〇印の実線が Regionwise ZIG-ZAG 理論 N_R =1,破線が N_R =2,点線が N_R =3 の結果であり,△印の実線が Layer-wise 理論の結果を表 している.

図より, Layer-wise 理論(△印の実線)では, 層数 が増えると誤差を 1%程度とするための未知自由度数 が大きく増加している(ただし, モデル AS12(逆対 称 12 層)では低下している).

一方, Region-wise ZIG-ZAG 理論では,領域数 $N_R=1$ (実線)では、3 層 (S3)から12層 (AS12)まで誤差を1%程度とするための未知自由度数はほぼ一定で約 20DOF 程度となっている.領域数 $N_R=2$ (破線)でも、どの層数においても未知自由度数は約 27DOF 程度とほぼ一定で、領域数 $N_R=3$ (点線)では S6 (対称6層)で少し大きくなっているが約 30DOF 程度となっている.

このことから, Region-wise ZIG-ZAG 理論では領域数 を少なくした方が未知自由度数が少なくなって,計算効 率が良いと言える.

また, Region-wise ZIG-ZAG 理論と Layer-wise 理論の誤 差を 1%程度とするための未知自由度数を比較すると, Region-wise ZIG-ZAG 理論の領域数 N_R =1 では, 3 層で は Layer-wise 理論に対して 70%程度, 4 層では 50%程度, 6 層では 32%程度, 12 層では 14%程度の未知自由度数で 誤差 1%程度の解を計算することができる(12 層では S12 の未知自由度数を用いている).

以上のことから, Layer-wise 理論と比較して, 誤差を 1%程度とするための未知自由度数は層数が多くなるほど 少なくなり, Region-wise ZIG-ZAG 理論では, Layer-wise 理論より効率的に高精度の解を計算できる.

4. まとめ

Region-wise ZIG-ZAG 理論による直交積層板の曲げ解 析を級数解法により定式化し、7 ケース(3 層~12 層) の異方性積層板の数値計算例を用いて精度を調べ、厳密 解に対する誤差を 1%程度とするための未知自由度数 を Layer-wise 理論と比較した.

図-3 異方性積層板 (h/b=0.3)

どの計算モデルにおいても Region-wise ZIG-ZAG 理 論では、領域の採り方に依らず展開次数を高めること で精度の良い変位と応力を計算できる.また、領域数 を増やすと変位と応力の収束性が改善されるが、領域 数を少なくした方が未知自由度数が少なくなって、効 率的に計算できる.

さらに, Region-wise ZIG-ZAG 理論では, Layer-wise 理 論と比較して, 誤差 1%程度とするための未知自由度数 は層数が多くなるほど少なくなる. Region-wise ZIG-ZAG 理論では, Layer-wise 理論に比べて効率的に高精度 な解を計算することができる.

謝辞: 本研究は JSPS 科研費 JP19K04586 の補助を受けた.ここに,記して感謝の意を表する.

参考文献

- 渡辺 力:効果的な ZIG-ZAG 関数の開発と異方性積層板 ならびに等方性平板の厚板解析への適用,土木学会論文集 A2(応用力学), Vol.74, No.1, pp.75-91, 2018.
- 渡辺 力:複合材料ならびに等方性材料からなる積層構造のための Region-wise ZIG-ZAG 理論の開発,土木学会論文集 A2(応用力学), Vol.76, No.1, pp.58-74, 2020.
- Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates, *J. Compos. Mater.*, Vol.4, pp.20-34,1970
- 4) 渡辺 力, 佐野凌希: Layer-wise 理論ならびに改良 ZIG-ZAG 理論による異方性積層板の曲げ解析, 土木学会北海 道支部論文報告集, 第 76 号, A-42, 2020.