らせん積層 CFRP 箱形断面梁の曲げ挙動の画像解析

Image analysis of bending behaviors of helicoidally laminated CFRP box-section beam

北海道大学工学部	○学生	Ė員	佐藤	有輝	(Yuki Sato)
北海道大学大学院工学研究院	正	員	鄧	朋儒	(Pengru Deng)
北海道大学大学院工学研究院	正	員	松本	高志	(Takashi Matsumoto)

1. はじめに

炭素繊維強化ポリマー(Carbon Fiber Reinforced Polymer、 以下 CFRP)は、軽量かつ高強度、高剛性で、耐久性が高 いといった特徴を有する。CFRPは航空宇宙、自動車、ス ポーツ用品など幅広い分野で利用されている。土木分野 でも補強材などに応用されており、主部材としての利用 も期待されている。

既往の研究¹⁾では、直交積層とらせん積層のCFRP箱形 断面梁を製作して曲げ載荷実験が行われた。載荷中のビ デオ撮影と実験後の供試体の顕微鏡観察がなされ、繊維 積層構成の違いが損傷過程・破壊挙動に与える影響を検 討している。

しかしながら、損傷前の供試体の曲げ挙動に関しては、 支間中央の変位計とひずみゲージによる計測のみにとど まっており、損傷に至るまでの詳細な変形挙動を捉える ことはできていない。また、変形挙動の違いを検討する 上で、各種計測機器による局所的な観察では不十分であ り、より広範囲の領域を対象とする必要がある。

本研究では、2種類のCFRP梁に対し、積層構成の違い が損傷前の曲げ挙動に及ぼす影響について、画像解析を 用いて検討することを目的とする。CFRP箱形断面梁供試 体のウェブ表面に対し、載荷前後の写真を用いてデジタ ル画像相関法による画像解析を行った。これにより損傷 前の表面変位の計測とひずみの算出を行い、変形分布の 面的な観察を行う。

2. CFRP 梁の曲げ載荷実験

2.1 プリプレグ

本研究では、供試体に三菱ケミカル製の UD 炭素繊維 プリプレグを用いている。UD炭素繊維プリプレグとは、 炭素繊維を一方向に配列させ、炭素繊維基材に着色剤、 充填剤等を適正な割合で混合した樹脂を含侵させたシー ト状のもので、かつ硬化させる前のものである。プリプ レグ目付は 188.9(g/m²)、繊維目付は 124.8(g/m²)、樹脂含 有率は 33.9(wt%)である。

2.2 供試体

供試体はプリプレグをステンレス製の芯材に巻き付け た上で、JIS 規格に基づいたプレス成形方法を用いて製作 した。標準寸法は、長さ 320mm、内寸高さ 42mm、内寸 幅 42mm、板厚 3mm である(図-1)。各供試体の積層構 成を表-1 に示す。配向角度は各面でプリプレグの繊維方 向が供試体の長さ方向に平行な層を 0°の層とし、それを 基準に反時計回りに繊維がなす角度と定義する。積層構 成の[]内の数字は配向角度、下付き文字は[]内のセット を繰り返した回数を示す。2 種類の積層構成名称を CP(Cross-Ply)、SH18(Single-Helicoidal 18)とする。

2.3 載荷条件

載荷機としてオートグラフ(SHIMADZU AG-1240kN)を 使用し、四点曲げ載荷実験を行った。図-1 に示すように、 支間長 270mm、せん断支間 90mm、曲げ支間 90mm であ る。載荷は 1.0mm/min の変位制御で行った。始めに予備 載荷として 2kN まで載荷を行って 0kN に除荷した後、本 載荷を行った。本載荷では、約 5kN 毎に載荷を停止して 画像撮影を行った。

2.4 実験結果

図-2 に実験で得られた荷重変位曲線を示す。CPの最大 荷重は 27.1kN、SH18の最大荷重は 27.75kN となった。

図-1 供試体寸法と載荷条件 (右側載荷点と支点はねじれ自由)

表-1	積層構成

名称	枚数	積層構成
СР	21	[0/90] ₁₀ /0
SH18	21	$[0/18/36/54/72/90/108/126/144/162]_2/0$

3. 画像撮影·解析手法

画像撮影には、Nikon のデジタルカメラ D3100 を使用 した。画素数は 4608×3072 ピクセル(約 1400 万画素)であ る。撮影は供試体のウェブ表面全体(320mm×42mm)に対 して行った。計測点は、軸方向に98点、高さ方向に14点 の計 1372 点を44 ピクセル間隔で格子状に設定した。

4. 画像解析結果

画像解析は、本載荷前 0kN 時と載荷荷重 25kN 時に撮影した画像を用いて行った。解析により軸方向変位と鉛 直方向変位を算出し、それらの値からせん断ひずみ、最 大主ひずみ、最小主ひずみを算出した。

4.1 せん断ひずみ

図-3、図-4に CP と SH18 のせん断ひずみ分布を示す。

CP ではせん断支間での値が顕著であり、大きなせん断 変形を起こしているのがわかる。また、載荷板端部でも 局所的に大きいひずみが見られる。SH18 では載荷板端部 と支点板付近、及びその直上の上フランジにおいても局 所的に大きいひずみが見られる。

また、せん断支間におけるひずみの最大値では、局所 的なものを除くと、CP は約40000µ、SH18 は約6000µと なっている。斜め方向の繊維を有していない CP に対し、 SH18 は複数の配向角で斜め方向の繊維を有しているため、 せん断剛性が格段に上がっていると言える。

4.2 最大主ひずみ

図-5、図-6 にそれぞれ CP と SH18 の最大主ひずみ分布 とベクトルを示す。ベクトルは矢印の傾きで方向を示し、 長さで大きさを示している。

ベクトル図では、CP において、曲げ支間とせん断支間 で傾きが明瞭に変化し、ウェブ全体で一様にせん断変形 している事が確認できる。SH18 では、載荷板を境にやや 滑らかに傾きが変化している。また、せん断支間におい て、ベクトルの方向が引張側から圧縮側にかけて徐々に 梁軸に平行な方向から直交する方向へと小さく変化する 傾向がある。異なる配向角を有する繊維層の影響により、 CPより緩やかに変化が起きていると考えられる。

4.3 最小主ひずみ

図-7、図-8 にそれぞれ CP と SH18 の最小主ひずみ分布 とベクトルを示す。CP ではせん断支間全体で大きなひず みが卓越しているのに対し、SH18 では載荷板端部や上フ ランジで局所的に大きなひずみが確認できる。らせん積 層にすることにより、フランジに比ベウェブ高さ中央の せん断剛性がより増大した結果、せん断支間での変形が 一様ではなくなっていると考えられる。

5. まとめ

本研究では、積層構成の異なる2種類のCFRP箱形断 面梁を製作して四点曲げ載荷実験を行った。実験で得ら れた画像を用いて画像解析を行い、積層構成の違いによ る変形挙動の差を検討した。

CP では一様に大きなせん断変形を起こしているのに対し、SH18 では CP よりひずみが小さく、せん断剛性が上がっていることに加え、上下フランジ位置のいくつかの箇所で大きなひずみが見られた。

図-8 SH18 最小主ひずみ分布図・ベクトル図

今後の課題として、変形挙動と損傷形態を関連付けた 考察及び、らせん積層の配向角度差の違いがそれらに与 える影響についての検討が挙げられる。

謝辞

本研究は JSPS 科研費 21H01411 基盤研究(B)の助成を受けた。ここに謝意を示す。

参考文献

 岩田壮,鄧 朋儒,松本高志:らせん積層 CFRP 箱 形断面部材の曲げ特性の基礎的検討,第77号土木学 会北海道支部論文報告集,A-22,2020.