鋼 I 桁供試体の 3 次元高密度点群モデルから FEM モデルへの自動変換

Automated FE modeling of an I shape steel girder specimen from the 3D dense point cloud model

e Sato)	瑛典 (Eisuke	佐藤	○学生会員	工学部	北見工業大学
nori Yasunori)	保紀 (Miyam	宮森	正 会 員	工学部	北見工業大学
ti Kudo)	将暉 (Masaki	工藤	学生会員	工学部	北見工業大学
yuki Yamazaki)	智之 (Tomoy	山崎	正 会 員	工学部	北見工業大学
iko Saito)	剛彦 (Takehi	齋藤	正 会 員	工学部	北見工業大学

1. はじめに

2013(平成 25)年の道路法改正等を受けて,2014(平成 26)年から道路管理者は,全ての橋梁等において5年に1 度の近接目視点検を行っている.道路橋の大部分を管理 する地方自治体は,国土交通省の「橋梁定期点検要領」 や固有の事情を踏まえた独自のマニュアルを作成して橋 梁点検を行っているが,予算の制約や技術者の不足によ り効率的な橋梁の維持管理が求められている¹⁾.

近年,構造物を撮影した画像から3次元点群モデルを 作成して,点検や維持管理に役立てる取り組みが行われ ている²⁾.3次元点群モデルを用いることで,構造物の 形状や表面の状態を把握することができる.しかし,3 次元点群モデルだけでは構造物の耐荷性能や内部の応力 状態を把握することができない.3次元点群モデルをよ り役立てるために構造解析可能なモデルに変換する手法 が必要である.

著者らはこれまで,画像データから構築した3次元点 群モデルを構造解析可能なFEMモデルへ変換する手法 について検討を行ってきた^{3),4)}. これまでは,断面ごと に節点を手動で構築したり,鋼板やT型梁など軸方向に 一様な断面形状のモデルで自動処理を行ってきたが,実 際の橋梁では上下フランジや補剛材など,より複雑な形 状を自動処理する必要がある.そこで,本研究では橋梁 主桁の桁端部を模したモデルを対象とした. 具体的な処 理方法は,3次元点群モデルからFEMモデルへの自動 変換を行う際に,ソリッド要素のメッシュサイズを部材 の状況により変更できるようにして,断面形状が変化す る場合に対応した.そして,従来のように部材の寸法か ら作成したFEMモデルと同じ解析条件で線形静的解析 を行った.解析結果を比較することで点群FEMモデル の妥当性を検討した.研究のフロー図を図-1に示す.

2. 撮影実験と3次元点群モデル構築

2.1 実験対象供試体

本研究では、図-2のような鉄道橋で使用されていた主 桁の一部を対象供試体とした³⁾. I 形桁の一部を切り出 し、ソールプレートと端垂直補剛材を新しく溶接して桁 端部を模している.供試体長は 750mm,高さ 410mm, フランジ幅は 152mm,部材厚は上フランジと下フラン ジが 21.50mm,ウェブが 14.00mm,端補剛材が 6.00mm である.図-3 に供試体の一般図を示す.供試体には 19 枚の模様が異なる円形マーカーを貼り付け、3 次元座標 を与える.座標の原点はマーカー1 に設定した.

図-2 対象供試体

図-3 I型供試体一般図(単位:mm)

2.2 撮影と3次元点群モデルの構築

撮影はソニー製のデジタルカメラα6500 を用いた.画 像データは jpeg 形式で記録画素数 4240×2832pixel で, カメラの設定は表-1に示す.供試体は,ソールプレート を台に載せ,ソールプレートから離れた桁端の上フラン ジをクランプによって吊り上げた.撮影は,桁の上下面 を含めて取り囲むように多方向から,正面方向でオーバ ーラップ率が 80%以上になるように撮影した.供試体に 正対する正面のみならず,材片の接合部など斜め方向か らも撮影している.図-4に供試体を撮影したカメラの位 置を示す.撮影した写真枚数は 344 枚となった.

3 次元点群モデルの構築については, Agisoft 社の Metashape Professional Ver1.6.5 build 11249 を使用した.ま ず撮影した画像から,アライメントを行い低密度な3次 元点群モデルを構築する.その後,高密度ポイントクラ ウドを行いより点群数の多いモデルを構築する.アライ メントと高密度ポイントクラウドの構築では,それぞれ 精度と品質を設定するが,本研究ではモデルの品質と解 析時間を考慮して,「最高」と「中」に設定した.構築 した3次元点群モデルを図-5に示す.モデルの端補剛材 取り付け部周辺の白い部分は,光の反射を防ぐため撮影 前にチョークを塗布した部分である.

3 次元点群モデルの精度を検討するため、各部の寸法 を実測値と比較した.まず供試体を安定した作業台に置 き、ノギス、メジャーや水準器、下げふりを用いて各部 の寸法やマーカー中心の座標を測定した.3 次元モデル においては、マーカー中心の座標を基準点として入力す ると、モデルの各部の寸法を測定できる(定規機能).

各部の寸法について実測値とモデル上の測定値の比較 を表-2に示す.おおむね1mm以内の誤差で精度の良いモ デルが得られており,劣化や損傷による部材形状の変化 を把握することが可能と考えられる.端垂直補剛材幅は 誤差が大きいが,補剛材端はウェブ面から突出している ことや,補剛材を斜めから撮影することでピントが合わ ない写真が含まれ,また斜め方向の撮影でオーバーラッ プ率が低下したことが原因と考えられる.このように 3 次元的に複雑な形状の場合,撮影距離やカメラの移動距 離を調整して,ピントやオーバーラップ率を維持するこ とで精度の向上が期待できる.

表-1	カメフの設定
ISO感度	100
占距離(mm)	18

焦点距離(mm)	18
絞り値	8
モード	A(絞り優先)
シャッタースピード	自動

図-4 カメラの位置

図-5 3 次元点群モデル

表-2 実測値と計測値の比較

	実測値(mm)	3 次元点群モデル(cm)*	誤差(%)
供試体長	750	75.0	0.00
フランジ幅	152	15.3	0.66
供試体高	410	40.9	0.24
上フランジ厚	21.50	2.20	2.33
下フランジ厚	21.50	2.20	2.33
ウェブ厚	14.00	1.44	2.86
垂直補剛材幅	55	5.73	4.18
垂直補剛材厚	6.00	0.59	1.67

※Metashape 定規機能出力值

3. 3 次元点群モデルから FEM モデルへの自動変換

3.1 節点の生成

まず点群モデルの点群を FEM モデルの節点に変換す る.図-6に示すように空間中に一定間隔の格子を設定し, その格子内に存在する点群の平均座標値を1つの代表節 点としている.ここで設定した格子の間隔が要素のメッ シュサイズに相当する.部材軸をx方向とし一定間隔で 区切りながら,yz断面に5mm間隔の格子を設定した. x方向に関しては,指定した範囲で格子の間隔を変更で きるようにし,本モデルでは全体は10mm間隔に設定し, 補剛材の部分は5mmに設定した.これは補剛材の厚さ が6mmのため6mmより狭くすることで補剛材の板厚を 2節点で表現するためである.なお,撮影時に供試体の 接地面となったソールプレート下面は点群情報がないた め,点群の座標を手動で追加して処理した.具体的な処 理はMATLAB R2020aで動作するプログラムと関数群に より行っている.

3.2 ソリッド要素の構築

本研究では FEM モデルの要素をソリッド要素とした. はじめにある x 座標における yz 平面について,図-7 に示すように節点をつないで断面の輪郭を作成する.輪 郭の作成では縮小係数によって細部の形状を制御する. 縮小係数は 0~1 の間で設定するが,大きすぎると輪郭が フランジとウェブの隅角部の内側に入り込んで断面が分 割されたり,小さすぎると隅角部の外側で大きなリブ状 の輪郭が作成されたりする.本研究では試行錯誤的に縮 小係数を 0.9 に設定した.

図-7 のように作成された輪郭に対して,2次元デロー ニー分割を行うことでx座標値ごとに部材断面が三角形 の要素で分割される.この処理を隣接する断面でも順に 行い,隣接する断面の最近傍の点同士を結ぶことでソリ ッド要素を構築する.この処理を繰り返すことで供試体 全体の要素分割が行われる.

3.3 その他のデータ

上述の方法により,FEM モデルで形状を表現する節 点と要素が得られた.さらに,材料の物性値や単位系な ど解析に必要な情報も加えて,テキスト形式でファイル に書き出す.このファイルを FEM ソフトウェアでイン ポートして FEM 解析を行うが,本研究では midas Civil 2010に対応した mct ファイルとした.なお,境界条件や 荷重については, midas Civil 上で設定した.

4. 線形静的解析

4.1 解析条件

3 次元点群モデルから作成した FEM モデル(以下, 点群 FEM モデルと称する)を図-8 に示す.節点数は 17,472点,要素数は15,994要素からなる.境界条件はソ ールプレート下面の節点を3方向で固定した.荷重は等 分布荷重を想定し,上フランジ上面に100kNを2245節 点で分割して鉛直下向きに載荷しているが,点群から変 換した節点の性質上,節点間隔は等間隔ではないため, 厳密な等分布荷重ではない.

比較対象とする FEM モデル(以下,比較 FEM モデル と称する)を図-9 に示す.この FEM モデルは実測寸法

から midas NFX 2014 で作成し, 163,014 節点, 87,512 要素からなる. 解析条件は点群 FEM モデルと同様ソール プレート下面を固定し, 節点荷重は鉛直下向きに 100kN を上フランジ上面の 5809 節点で等分割して設定した.

4.2. 解析結果

図-10 に比較 FEM モデルと点群 FEM モデルにおける 有効応力の分布図を示す.比較 FEM モデルでは、ソー ルプレートの支間側端部直上のウェブで応力が最大とな っている. ウェブ面内は、応力最大箇所から放射状に広 がる応力分布となっている. 点群 FEM モデルの同じ箇 所でも, ソールプレート端部直上の応力の値が大きく, そこから放射状に分布が広がっているため、点群 FEM モデルでも応力解析は可能と判断できる.一方,点群 FEM モデルではウェブとフランジの接合部に図-7 のよ うな実際より大きなリブ状の要素があるため、応力の大 きい要素が上方に移り、応力は小さくなる.また、比較 FEM モデルの最大応力が 137.55N/mm² なのに対し, 点 群 FEM モデルは 539.11N/mm²となった. 点群 FEM モデ ルの最大応力発生箇所はソールプレート直上の端補剛材 の接合部だが、この部分は、点群データが足りず接合部 分の節点が1つにまとまり扁平な要素形状となっている. その他の箇所でも, FEM ソフトウェアにインポートす る際に読み込めず欠落した要素の周辺や、形状が扁平な 要素では応力が大きく計算されてしまう. そのため, 点 群 FEM モデルで最大応力などを定量的に評価するため には,要素作成の方法について,要素の形状や接合部分 の精度を改良することが必要である.

5. まとめと今後の課題

本研究では、画像データから作成した3次元点群モデ ルから変換した FEM モデルを構築し、線形静的解析を 行うことで点群 FEM モデルの妥当性を検討した.

- デジタルカメラで撮影した点群 FEM モデルはおお むね1mm以下の精度でモデル化できた.
- 2) FEM モデル構築の際に,指定した範囲で軸方向の 格子間隔を変更することで,断面変化に対応した モデルを構築することができた.
- 3) 点群 FEM モデルの比較結果では全体的な応力の分 布を把握することができたため、将来的には損傷 を受けた鋼構造物への応力評価に応用できる可能 性がある.
- 4) フランジとウェブの溶接部や、垂直補剛材の溶接 部などに発生するリブ状の要素が応力評価に影響 を及ぼすため、正確な要素形状の作成ができるア ルゴリズムの改善が必要である.

謝辞

本研究は,科学研究費 基盤(C)課題番号 18K04317 の 助成を受けて実施しました.ここに記し感謝いたします.

参考文献

 川西寛,丸山收,三木千壽:市町村の橋梁点検業 務の費用分析と対策について,構造工学論文集, Vol.62A, pp.459-471, 2016. N/mm² 150.0 137.5 125.0 112.5 100.0 87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0

(a) 比較 FEM モデル

N/mm²

150.0 136.4 122.7 109.1 95.5 81.8 68.2 54.5 40.9 27.3 13.6 0.0

(b) 点群 FEM モデル

図-10 有効応力の分布図

- 藤田陽一,緒方正剛, Wongsakorn Chanseawrassamee, 小林一郎:属性を付与した道路点群データの建設 ライフサイクルでの利用,土木学会論文集 F3(土 木情報学), Vol.70, No.2, pp.I_144-I_151, 2014.
- 3) 鈴木紗苗,宮森保紀,齊藤剛彦:高密度点群デー タの構造解析モデルへの変換に関する基礎的研究, 土木情報学シンポジウム講演集, Vol.43, pp.25-28, 2018.
- 4) 鈴木紗苗,宮森保紀,齋藤剛彦,山崎智之,ムン フジャルガルダンビーバルジル,三上修一:鋼構 造部材の3次元点群モデル構築とFEMデータへの 自動変換に関する検討,土木学会論文集F3(土木 情報学), Vol.75, No.2, p.I_141-I_149, 2019.