Region-wise ZIG-ZAG 理論による異方性積層板の曲げ解析

Bending analysis of anisotropic laminated plates by using region-wise ZIG-ZAG theory

函館工業高等専門学校	学生会員	○佐野 凌希 (Ryoki SANO)
函館工業高等専門学校	正 員	渡辺 力 (Chikara WATANABE)

1. まえがき

繊維強化プラスチック(FRP)などの異方性積層板で は、板厚比が大きくなると ZIG-ZAG 変位の影響が顕著 に現れ、従来の等価単層理論では高次理論を用いても精 度が悪くなる.そのため、ZIG-ZAG 理論や Layer-wise 理論などの様々な理論の研究が行われている.

FRP で補強された鋼やコンクリート構造に ZIG-ZAG 理論を適用するために,改良 ZIG-ZAG 理論が開発され ている¹⁾. さらに,この理論を剥離解析やサンドイッチ 構造に適用するために, Region-wise ZIG-ZAG 理論の開発 を進めている²⁾. この Region-wise ZIG-ZAG 理論は,改 良 ZIG-ZAG 理論と Layer-wise 理論³⁾を融合したもので, 自由度を領域境界と領域内部に与え,領域内部の ZIG-ZAG 変位を効率的に表現するために高次の改良 ZIG-ZAG 理論を用いている.

本研究では、異方性積層板の曲げ解析に Region-wise ZIG-ZAG 理論を適用して、この理論の精度を検証する とともに、Layer-wise 理論と計算効率を比較することを 目的としている.対称6層積層板の級数解により、厳密 解に対する精度を検証し、Layer-wise 理論と計算効率を 比較した結果について報告する.

2. Region-wise ZIG-ZAG 理論

Region-wise ZIG-ZAG 理論は、改良 ZIG-ZAG 理論と Layer-wise 理論を融合したものである.まず、板厚hの 異方性積層板あるいはサンドイッチ板を、図-1に示すよ うに板厚方向に対して N_R 個の領域に分ける.

図-1における第 r 番目の領域を図-2に示す.領域境界の z 座標値を z_r, z_{r+1} とし、領域内の層数を N_r 、領域の厚さを h_r 、第 k 層目の厚さを $h^{r(k)}$ とする.また、領域内に変域 [-1, 1] の正規化座標 ζ^r を設ける.

$$\zeta^{r} = \frac{2}{h_{r}} (z - z_{m}^{r}) , \qquad z_{m}^{r} = (z_{r+1} + z_{r})/2 \qquad (1)$$

ここに,式(1)の z_m^r は領域rの中央点のz座標値である.

2.1 変位場

Region-wise ZIG-ZAG 理論では,図-2に示す領域 r 第 k層の変位を次式で与える.

$$u^{r(k)} = f_0^r u_r + f_1^r u_{r+1} + \sum_{s=1}^{p_u^r} \phi_{us}^{r(k)} u_s^r$$

$$v^{r(k)} = f_0^r v_r + f_1^r v_{r+1} + \sum_{s=1}^{p_v^r} \phi_{vs}^{r(k)} v_s^r$$

$$w^{r(k)} = f_0^r w_r + f_1^r w_{r+1} + \sum_{s=1}^{p_w^r} \phi_{ws}^{r(k)} w_s^r$$
(2)

ここに,式(2)の右辺第 1 項と第 2 項が領域境界変位の 項で,第 3 項が領域内部変位の項である. u_r, u_{r+1} など は図-1に示す領域 r の境界変位で, u_s^r, v_s^r, w_s^r は領域 rの内部変位を表す.sは板厚方向(ζ^r 方向)の補間関 数(多項式)の次数を表し, p_u^r, p_v^r, p_w^r は各変位成分 の領域 r での展開次数を表す.

領域内部変位の項(式(2)の右辺第3項)において, s=1 の場合が ZIG-ZAG 項で, $\phi_{u1}^{r(k)}$, $\phi_{v1}^{r(k)}$, $\phi_{w1}^{r(k)}$ が領域 ZIG-ZAG 関数, u_1^r , v_1^r , w_1^r が領域 ZIG-ZAG 変位である. また, s ≥ 2 の場合が領域高次変位の項で, u_s^r , v_s^r , w_s^r (s ≥ 2) は領域内部変位の高次項である.

2.2 補間関数と領域 ZIG-ZAG 関数

1) 領域境界

領域境界変位の補間関数には次式を用いる.

$$f_0^r = \frac{1}{2}(1 - \zeta^r), \qquad f_1^r = \frac{1}{2}(1 + \zeta^r)$$
 (3)

2) 領域内部 s=1 (領域 ZIG-ZAG 関数)

領域内部変位の項 s=1 の関数には,次の領域 ZIG-ZAG 関数を用いる.この領域 ZIG-ZAG 関数は,図-2(a) の改良 ZIG-ZAG 関数において領域下端の関数値がゼロ となるように補正を行ったもので,図-2(b)のように領域上端と領域下端で関数値はゼロとなる.

$$\phi_{u1}^{r(k)} = (\beta_{u}^{r(k)} - F_{u}^{r}/2) \zeta^{r} + a_{u}^{r(k)}$$

$$\phi_{v1}^{r(k)} = (\beta_{v}^{r(k)} - F_{v}^{r}/2) \zeta^{r} + a_{v}^{r(k)}$$

$$\phi_{w1}^{r(k)} = (\beta_{w}^{r(k)} - F_{w}^{r}/2) \zeta^{r} + a_{w}^{r(k)}$$

$$(4)$$

ここに,

$$a_{u}^{r(k)} = (\beta_{u}^{r(1)} - F_{u}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{u}^{r(i-1)} - \beta_{u}^{r(i)})$$

$$a_{v}^{r(k)} = (\beta_{v}^{r(1)} - F_{v}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{v}^{r(i-1)} - \beta_{v}^{r(i)})$$

$$a_{w}^{r(k)} = (\beta_{w}^{r(1)} - F_{w}^{r}/2) + \sum_{i=2}^{k} \zeta_{i}^{r} (\beta_{w}^{r(i-1)} - \beta_{w}^{r(i)})$$
(5)

式(4), (5) の $\beta_u^{r(k)}, \beta_v^{r(k)}, \beta_w^{r(k)}$ は領域 ZIG-ZAG 関数の勾 配である.また, F_u^r などは図-2(a)に示す改良 ZIG-ZAG 関数の領域下端での関数値である.

3) 領域内部 s≧2

領域内部変位の項 $s \ge 2$ の補間関数には,領域上下端 で関数値がゼロの条件を満たすハイアラーキ多項式を用 いる. Layer-wise 理論では補間関数に Lagrange 多項式が 用いられるが,このハイアラーキ多項式は数値計算が容 易で,この多項式を用いた剛性行列の条件数は Lagrange 多項式を用いた場合に比べ小さく,消去演算での桁落ち が少なくなる.

図-1 Region-wise ZIG-ZAG 理論の概念

図-2 第r番目の領域と領域 ZIG-ZAG 関数

$$\phi_{\mathcal{U}S}^{r} = \phi_{\mathcal{V}S}^{r} = \phi_{\mathcal{W}S}^{r}$$

$$= \left(1 - (\zeta^{r})^{2}\right) (\zeta^{r})^{s-2} \quad (s \ge 2) \quad (6)$$

なお,式(6)の関数は領域r内において層番号kに依存しないので,右上添字(k)を省略している.

3. 数値計算例

3.1 計算モデル

計算モデルは、図-3 に示す長さ a, 幅 b, 板厚 h の周 辺単純支持された直交積層板であり,形状比を a/b=1, 板厚比を h/b=3/10 とする.繊維配向を[0/90°/0/090°/0] とした対称 6 層積層板について計算する.材料定数には 次の値を用いる.

$$E_1/E_2 = 25$$
, $E_3 = E_2$ $G_{12} = G_{13} = 0.5E_2$

 $G_{23} = 0.2E_2$, $v_{12} = v_{13} = v_{23} = 0.25$

荷重は,図-3 に示すように板上縁に正弦荷重を載荷し, 厳密解⁴⁾に対する精度を検証する.

3.2 精度と効率性

表-1 は対称 6 層積層板の変位の 3 成分と応力の 5 成分 の最大値の厳密解 ⁴⁾に対する誤差(%)と、未知自由度数 (DOF)を示している. 領域数は $N_R = 1, 2, 3$ の場合を 計算し、展開次数は各変位成分で同じ $p_u^r = p_v^r = p_w^r \equiv p$ として $p = 0 \sim 5$ まで採っている.

表-1 より, Region-wise ZIG-ZAG 理論では、どの領域 数 N_R においても次数 p を増やすことで精度は大きく改 善され、収束性は良好である。どの領域数においても次

令和2年度 土木学会北海道支部 論文報告集 第77号

表-1 対称6層積層板 [0/90°/0/0/90°/0]の変位と応力の誤差 (h/b=3/10) (%)

N_R	p	и	v	W	σ_x	σ_y	τ_{xy}	τ_{yz}^{*}	$\tau_{_{\!X\!Z}}$ *	DOF
1	0	-42.213	-53.705	-25.914	-42.245	-22.664	-49.829	27.834	-10.511	6
	1	-27.723	-18.356	-5.451	-26.544	-6.932	-21.515	-1.520	12.147	9
	2	-22.496	-13.911	-5.226	-21.274	-4.178	-16.806	-1.584	12.092	12
	3	-2.077	0.034	-0.525	-1.396	-3.391	-0.678	-0.091	0.076	15
	4	-1.213	0.342	-0.365	-1.113	-2.870	-0.182	0.060	0.219	18
	5	-0.196	0.630	-0.228	-0.146	-2.133	0.351	-0.059	1.250	21
2	0	-39.993	-51.580	-24.899	-39.431	-21.076	-47.672	28.567	-9.938	9
	1	-24.339	-14.718	-5.267	-23.240	-4.005	-17.963	-1.424	12.265	15
	2	-3.249	-0.574	-0.634	-2.606	-2.571	-1.476	-0.321	-0.991	21
	3	-1.237	0.276	-0.346	-1.096	-2.766	-0.234	-0.067	0.595	27
	4	-0.190	0.662	-0.119	-0.183	-2.194	0.375	-0.007	-0.083	33
	5	-0.145	0.550	-0.090	-0.145	-1.866	0.316	0.007	-0.044	39
3	0	-29.404	-25.154	-15.432	-28.469	-15.132	-26.587	-13.697	-1.224	12
	1	-6.783	-3.255	-1.521	-6.256	-5.730	-4.445	0.074	-0.172	21
	2	-1.553	-0.436	-0.345	-1.194	-0.540	-0.813	-0.364	0.403	30
	3	-0.061	-0.143	-0.058	-0.048	-0.350	-0.115	-0.045	-0.087	39
	4	-0.010	-0.072	-0.022	-0.020	-0.173	-0.051	0.005	-0.034	48
	5	-0.004	-0.027	-0.008	0.009	-0.069	-0.020	0.002	-0.011	57
LW	1	-6.897	-3.303	-1.597	-6.365	-5.723	-4.515	-0.636	-8.616	21
	2	-0.225	-0.156	-0.094	-0.142	-0.174	-0.179	0.184	4.553	39
	3	-0.001	-0.001	-0.0003	0.011	0.012	-0.001	-0.009	-0.232	57
厳密解 ⁴⁾		2.849619 ($\tilde{u} \times 1000$)	5.599548 ($\tilde{v} \times 1000$)	2.616745 ($\widetilde{w} \times 100$)	-7.907901 ($\tilde{\sigma}_x \times 10$)	-5.986812 ($\tilde{\sigma}_y \times 10$)	4.423974 ($\tilde{\tau}_{xy} \times 100$)	$1.763176 \\ (\tilde{\tau}_{yz} \times 10)$	$2.979940 \ (\tilde{\tau}_{xz} \times 10)$	_
観測点		D, $z = -h/2$	C, $z = -h/2$	A, $z = -h/2$	A, $z = -h/2$	A, 2層目上縁	B, $z = -h/2$	$\overline{\mathrm{C}, z=0}$	$\overline{\mathbf{D}, z=0}$	_

図-3 計算モデル(対称6層積層板)

数 *p*=0 では誤差が大きくなっているが, 次数 *p*=1 とし て ZIG-ZAG 項を加えると精度が大きく改善されている.

 N_R =1の場合には p=4 (DOF=18), N_R =2の場合に はp=3 (DOF=27), N_R =3の場合にはp=2 (DOF=30) に 採ると変位と応力の誤差はほぼ 1%程度となっている. これより, Region-wise ZIG-ZAG 理論では, 誤差 1%程 度の解を計算する場合, 領域数 N_R を少なくした方が 未知自由度数 (DOF) が少なくなり, 効率的に計算でき ることが分かる.

一方、Layer-wise 理論(LW)では、次数を増加させることで高精度の解が得られるが、それに伴い未知自由度数(DOF)が急激に増加する。特に、面外せん断応力 τ_{xz} は誤差が大きく、誤差 1%程度の解を得るためには

p=3 (DOF=57) を用いる必要がある.

Region-wise ZIG-ZAG 理論と Layer-wise 理論の未知自 由度数を比較すると, Region-wise ZIG-ZAG 理論では約 1/3~1/2 程度の未知自由度数(DOF)で誤差 1%程度の 解を計算できている.よって, Region-wise ZIG-ZAG 理 論は, Layer-wise 理論に比べて, 効率的に高精度な解を 計算することができると言える.

3.3 解の収束性

図-4には、対称6層積層板において領域数*N_R*=1とした場合の変位の3成分と面外応力の3成分の板厚方向の分布を示す.

図-4(a)の変位の分布を見ると、面内変位 u, vに ZIG-ZAG 変位が生じているが、面内変位 v では、1 層と2層、5 層と6層で ZIG-ZAG 分布となっていない.これは外側弱層の影響によるものであり、式(2)の変位場により層間での連続性を満足している.また、変位の収束性は良好で、次数 p=0 では、等価単層理論と同様に板厚全体で直線分布であるが、次数 p=1 として ZIG-ZAG 項を付加すると ZIG-ZAG 分布を表現できており、次数 p=3とすると厳密解と良く一致した値が得られている.面外変位 w では、面内変位 u, vと異なり ZIG-ZAG な変位とならないが、次数 p=3 に採ると厳密解と良く一致した値が得られている.

図-4 対称6層積層板 [0/90°/0/0/90°/0]の変位と改良面外応力の分布(領域数 N_R=1)

図-4(b)は、構成方程式を用いずに三次元弾性理論の 平衡方程式から計算した改良面外応力である^{1),2)}. どの 次数においても、層間での連続性、上下縁での境界条件 を満足する値が得られている. 改良面外応力の収束性も 良好で、改良面外垂直応力 σ_z^* ではp=0,改良面外せん 断応力 τ_{yz}^* ではp=1, τ_{xz}^* ではp=3を用いると厳密解と 良く一致した値が得られている.

4. まとめ

Region-wise ZIG-ZAG 理論を対称 6 層積層板の曲げ解 析に用いて厳密解に対する精度を調べ, Layer-wise 理論 と効率性を比較した. Region-wise ZIG-ZAG 理論では, 領域数に依らず展開次数を高めることで高精度の解を得 ることができ,解の収束性も良好である.

さらに, Layer-wise 理論に比べて約 1/3~1/2 程度の未 知自由度数 (DOF) で, 誤差 1%程度の変位と応力を効 率的に計算することができる. **謝辞**:本研究は JSPS 科研費 JP19K04586 の補助を受けた.ここに,記して感謝の意を表する.

参考文献

- 渡辺 力:効果的な ZIG-ZAG 関数の開発と異方性積層板な らびに等方性平板の厚板解析への適用,土木学会論文集 A2 (応用力学), Vol.74, No.1, pp.75-91, 2018.
- 渡辺 力:複合材料ならびに等方性材料からなる積層構造 のための Region-wise ZIG-ZAG 理論の開発,土木学会論文 集 A2(応用力学), Vol.76, No.1, pp.58-74, 2020.
- (渡辺 力,佐野凌希: Layer-wise 理論ならびに改良 ZIG-ZAG 理論による異方性積層板の曲げ解析,土木学会北海道支部論文 報告集,第76号,A-42,2020.
- Pagano,N.J. : Exact solutions for rectangular bidirectional composites and sandwich plates, J.Compos.Master., Vol4,pp.20-34, 1970.