らせん積層 CFRP 箱形断面部材の曲げ特性の基礎的検討

Preliminary study on the flexural properties of CFRP box beams with helicoidal laminate

北海道大学工学部	○学生員	岩田	壮	(Takeshi Iwata)
北海道大学大学院工学研究院	正 員	鄧	朋儒	(Pengru Deng)
北海道大学大学院工学研究院	正 員	松本	高志	(Takashi Matsumoto)

1. まえがき

CFRP(Carbon Fiber Reinforced Polymer: 炭素繊維強化 ポリマー)とは、炭素繊維と熱硬化性樹脂の複合材料で ある。低密度であるが、比強度と比剛性、耐腐食性に優 れ、軽くて強い材料である。しかしながら、CFRP は破 壊挙動が脆性的であり、線形弾性挙動の後に突然の荷重 降下挙動を示す。

これまでに石澤ら¹⁾⁻⁴⁾より、らせん積層にすることで CFRP の脆性的な挙動が緩和されることが確認された。 さらに、らせん積層の層間の配向角度差が数種類検討さ れ、配向角度差の小さいらせん積層構成のほうが CFRP の脆性的な挙動がより緩和されることが確認された。本 研究ではこれらの結果を踏まえ、らせん積層 CFRP によ る構造部材の基礎的検討として箱形断面部材の損傷・破 壊形態について検討を進めるものである。

既往の研究ではらせん積層 CFRP の長方形板供試体を 製作したが、本研究ではらせん積層 CFRP の箱形断面部 材について、曲げ変形・耐荷挙動を観察・検討すること を目的とする。直交積層、らせん積層の計2種類につい て、らせん積層 CFRP 箱形断面部材の供試体を作製して 四点載荷実験を行い、計測した荷重と変位より荷重一変 位曲線を作成し、損傷・破壊状況も観察する。これらの 結果を踏まえ、らせん積層 CFRP 箱形断面部材の曲げ変 形・耐荷挙動における損傷・破壊形態の考察を行う。

2. 実験方法

2.1 プリプレグ

CFRP 箱形断面部材は UD (Uni-Directional) プリブレ グ(三菱ケミカル社製)を用いて作製した。プリプレグ とは、炭素繊維を一方向に配列させ、炭素繊維基材に着 色剤、充填材等を適正な割合で混合した樹脂を含浸させ たシート状のもので、かつ硬化させる前のものである。 今回作製したすべての供試体においてプリブレグ目付は 188.9g/m²、繊維目付は 124.8g/m²、樹脂含有率は 33.9 wt%である。

2.2 供試体

四点載荷実験に用いた供試体は、CFRP の箱形断面 部材(長さ 300mm、高さ 25mm、幅 25mm、板厚 1.5mm) である(図-1 参照)。供試体はプリプレグ をアルミニウム製の芯材に巻き付けた上で、プレス成形 方法を用いて作製した。プリプレグの配向角度は、供試 体の長辺方向の 0°より反時計回りを正として繊維方向 がなす角度と定義した。本研究で作製した供試体は、表 -1に示す2種類である。表-1の[]内の配向角度を順

図-1 供試体寸法および載荷条件

表-1 供試体積層構成

名称	枚数	積層構成		
СР	11	[0/90] 5/0		
SH	11	[0/18/36/54/72/90/108/126/144/162]/0		

に積層して、下付き数字の回数を繰り返した。直交積層 を CP、らせん積層を SH と呼ぶ。両供試体とも、閉断 面の外面と内面ともに配向角度は 0°である。

2.3 載荷条件

載荷実験装置にはオートグラフ(SHIMADZU AG 1250kN)を使い、四点載荷実験を行った。図-1 に示す ように、支点間隔は 270mm、せん断スパンは 90mm と した。両供試体で、圧縮面と引張面の最外層は配向角度 0°となる。載荷速度は 1.0mm/min の変位制御とした。 変位とひずみの計測点は 図-1 のとおりとし、レーザ 一変位計 3 点(図中黒矢印)、一軸ひずみゲージ 1 点 (図中黒四角)とした。大きな荷重降下後、載荷をこれ 以上続けると供試体が破断すると判断したとき実験終了 とした。

3. 実験結果

3.1 荷重-変位曲線

実験で得られた CP と SH の荷重-変位曲線を図-2 に示す。初期剛性については原点と第一ピーク荷重点を 結んだ直線の傾きを算出してまとめた

CP の最大荷重と最大荷重時変位、初期剛性はそれぞ れ 4.47kN、4.20mm、1.12kN/mm となった。最大荷重ま でほぼ線形に荷重が増加し、最大荷重到達後、小さく荷 重降下と増加を繰り返し、破断した。大きな荷重降下は 見られなかった。

SH の最大荷重と最大荷重時変位、初期剛性はそれぞ れ 4.69kN、3.63mm、1.37kN/mm となった。約 4.5kN に 達し、しばらく荷重を保持した後、4.69kN まで荷重増 加して最大荷重を示した。その後大きく荷重降下した後、 破断した。

3)風 (0)二福岡 写真-2 SH の破断部写真

SH の方が、初期剛性、最大荷重共に大きい値を示し、 最大荷重時変位が小さい値を示したのは、積層構成にお いて 0°方向に近い配向角度の層が多いためと考えられ る。また、SH が約 4.5kN に到達後にしばらく荷重を保 持したのは、CP の様に側面のひび割れが一直線状に脆 性進展したのではなく、局所的に方向を変えながら荷重 降下を起こさずに蛇行状に進展したからと考えられる。

3.2 損傷・破壊形態の観察

載荷実験終了後の供試体の破断の様子を顕微鏡で調べた。顕微鏡は Dino-Lite Edge Digital Microscope を使用した。圧縮面(上フランジ)と側面(ウェブ)の撮影範囲を図-3 の赤斜線部に示す。また、破壊部の写真を写真

-1,2 に示す。長方形板供試体と同様に両供試体は圧 縮面からひび割れが発生している。両供試体で、破断の 際には圧縮面に層間剝離が起きていた

CP には圧縮面全体で、顕著な層間剝離が確認された が、側面には見られず、ひび割れが生じていたのみであ った。CP の長方形板供試体でも、圧縮面に層間剝離が 生じており、圧縮面の挙動は似た挙動を示した。

SH は CP と異なり、側面にも層間剝離が顕著にみら れた。らせん積層のウェブについてはこれまでに報告が ないため今後のさらなる検討が必要である。また、SH の長方形板供試体は、引張面で多くの層間剝離が生じる が、圧縮面では少ないのが特徴であった。本研究での箱 型断面部材では引張面(下フランジ)において損傷は見 られなかった。これは CFRP が一般的に引張強度より圧 縮強度が低いことによると考えらえる。今回の両積層構 成については材料試験をしていないので、今後は材料特 性を取得し検討する必要がある。

4. まとめ

本研究では、直交積層とらせん積層の CFRP 箱形断面 部材を作製し、四点載荷実験を行った。荷重-変位曲線 を得るとともに、破壊後供試体表面の顕微鏡観察により、 CFRP のらせん積層構成による変形・耐荷挙動、損傷・ 破壊形態の検討を行った。0°方向に近い配向角度の層が 多いこともあり、SH が CP より初期剛性と最大荷重に おいて大きい値を示した。破壊形態では、SH のウェブ には蛇行状のひび割れが発生し、これが最大荷重付近で の荷重保持につながったと考えられる。

本研究ではらせん積層 CFRP 箱形断面部材の1体のみ の供試体を対象としたため、今後の課題として、複数の 供試体で実験を行うことや、配向角度や積層枚数の変化 が、曲げ変形・耐荷挙動に与える影響について検討する ことが挙げられる。

謝辞

本研究は科研費(基盤研究(B)18H01515)により成さ れた。ここに謝意を示す。

参考文献

- 石澤郁馬・細目貴之・松本高志:らせん積層 CFRP の曲げ破壊形態,第73号土木学会北海道支部論文報 告集,A-13,2017.
- 石澤郁馬・近藤健太・松本高志:らせん積層 CFRP の4 点曲げ挙動に関する実験,第74号土木学会北 海道支部論文報告集,A-43,2018.
- 松本高志・石澤郁馬・近藤健太: CFRP のらせん積 層化による曲げ挙動と破壊形態の検討, 土木学会論 文集 A2(応用力学), Vol.74, No.2(応用力学論文 集 Vol.21), I_639-I_647, 2018.
- 4) 浜山千佳・鄧 朋儒・松本高志:限定的にらせん積層を用いた CFRP の曲げ変形・耐荷挙動に関する研究,第 76 号土木学会北海道支部論文報告集,A-37,2019.