FE モデルを用いた橋脚洗掘に対する安全閾値の基礎的検討

A fundamental study for safety threshold of scoured bridge pier by using FE model

北見工業大学 工学部	○学生会員	中野	孝亮 (Kosuke Nakano)
北見工業大学 工学部	正 会 員	宮森	保紀 (Yasunori Miyamori)
株式会社構研エンジニアリング		今泉	宜人 (Yoshihito Imaizumi)
日本仮設株式会社	正会員	日向	洋一 (Yoichi Hinata)
北見工業大学 名誉教授	正会員	三上	修一 (Shuichi Mikami
北見工業大学 名誉教授	名誉会員	大島	俊之 (Toshiyuki Oshima)

1. はじめに

近年、日本各地で豪雨による災害が発生している。橋 梁では豪雨による河川の増水などにより橋脚が洗掘を受 ける被害がこれまで多く報告されている¹⁾. 北海道でも、 橋脚の洗掘により橋梁が通行止めとなり交通ネットワー クの機能低下を招く事例が報告されている^{2),3)}。また豪 雨災害時だけでなく、河床低下により洗掘を受ける橋脚 も増えている。下部構造の洗掘によって、橋梁全体に沈 下、傾斜、損傷を与える恐れがある。このような場合、 橋梁は通行止めとなり、災害時の避難・救援のみならず、 地域の経済活動にも大きな影響を与える。そのために道 路の安全管理の一環として、洗掘を受ける橋脚の安全性 を監視する仕組みの整備が必要である。

本研究では、橋脚を有する橋梁を対象として、橋脚基 部が洗掘を受けた場合に、洗掘の進行に伴う橋脚の変状 を数値解析的に検討した。また、変状を把握する指標と して、橋脚の傾斜に着目し、洗掘の進行に対する傾斜の 推移やひび割れの発生状況などをまとめた。これらの結 果から、将来、橋脚の洗掘モニタリングを実施する場合 の安全閾値について基礎的検討を行った。

具体的には、直接基礎を有する橋脚を含む2径間単純 合成鈑桁橋のモデルを FEM で構築した。フーチング底 面の各節点に地盤バネを接続し、洗掘を模擬して段階的 に地盤バネを削除して非線形静的解析を行った。解析結 果は橋梁各部の傾斜角、コンクリートのひび割れの発生 状況、コンクリートのソリッド要素の最大・最小主応力、 鉄筋の軸方向応力について整理したため、その結果を報 告する。

2. 解析モデルの構築

2.1 対象橋梁

対象橋梁の一般図を図-1 に示す。対象橋梁は、支間長 28mの2径間単純合成鈑桁橋で橋長57.1mである。鉄筋 コンクリート床版を有し、主桁本数は3本である。また、 下部構造形式は重力式橋台とT型橋脚で柱は円形断面で ある。基礎構造はいずれも直接基礎である。

2.2 対象橋梁のモデル化

対象橋梁のモデル化に際して、解析ソフトは有限要素 解析プログラムである midas FEA NX を用いた。

図-2 に解析モデルの全景を示す。モデルの座標軸は右 手座標系とし、橋軸方向を X 軸、橋軸直角方向を Y 軸、

図-2 解析モデルの全景

表-1 部材の物性値 4), 5), 6)				
	材料	弹性係数	ポアソ	単位重量
		(N/mm^2)	ン比	(N/mm^3)
橋台	Fc18	22000	0.17	0.000023
橋脚・ 沓座	Fc21	23500	0.17	0.000023
床版	Fc27	26500	0.17	0.000023
主桁・ 補剛材	Steel	200000	0.3	0.000077
鉄筋	SD30	200000	0.3	0.000077

表-2 地盤のバネ定数(N/mm)

	方向		
	Х	Y	Z
橋脚	2507	2507	5336
橋台	2074	1074	2449

表-3 支点部バネ定数(N/mm)

	並進方向		回転方向			
	Х	Y	Ζ	Rx	$R_{\rm Y}$	Rz
可動側	10	1.0>	< 10 ⁵	1.0×105	10	1.0×105
固定側	1	.0×10 ⁵		1.0×10°	10	1.0×10°

鉛直方向を Z 軸とした。

表-1 に部材の物性値を示す^{4), 5), 6)}。コンクリートの設計基準強度は、橋台 $\sigma_{ck} = 18N/mm^2$ 、橋脚 $\sigma_{ck} = 21N/mm^2$ 、床版 $\sigma_{ck} = 27N/mm^2$ とした。橋台と橋脚のコンクリートは非線形ソリッド要素を用いた。非線形関数は圧縮関数にThorenfeldt モデルを使用し、橋台と橋脚の設計基準強度を与えた。引張関数は橋台と橋脚どちらも引張強度 $f_t = 2N/mm^2$ とし、完全弾塑性型の応力-ひずみ関係とした。コンクリート内の鉄筋は線形弾性トラス要素を用い、材料に降伏応力 295N/mm²の Von Mises 降伏条件を与えた。落橋防止装置は非線形弾性関数を与えたバネ要素でモデル化した。

また本解析では、上部構造の損傷は考慮していないた め、主桁、端補剛材、中間補剛材、ソールプレートはシ ェル要素、対傾構、横構はトラス要素、床版コンクリー トはソリッド要素とし、材料モデルは線形弾性要素とし た。

地盤のモデル化は、フーチング底面に圧縮専用の1節 点バネ要素を用いた。地盤バネ定数の算出については、 支持地盤のN値を30とし、地盤反力係数⁷⁾ ko=0.28×10⁶N/mm²からフーチング面積、フーチング下面 の節点数を考慮して表-2のバネ定数を決定した。

支点部のモデル化に際しては、線形バネ要素とし、表 -3に示す支点部バネ定数を与えた。

3. 橋脚の洗掘を模擬した非線形静的解析

3.1 解析条件

解析条件は橋脚の変位、コンクリートと鉄筋の応力、 コンクリートのひび割れを求めるために非線形静的解析 とした。洗掘の再現方法は橋脚フーチングの地盤バネを 段階的に消去することによって再現した。洗掘は図-3の ように橋軸直角方向で上流側から進行することとし、列 ごとにおおむね10%ずつ地盤バネを消去して、消去した 地盤バネの割合を洗掘割合と称する。また、モデルに作 用する荷重は自重のみとした。

傾斜角はフーチング下面および天端の隅角部の鉛直変 位から、橋軸周りと橋軸直角周りの角度を求める。図-4 のような橋脚の傾斜に対し、傾斜角は次の式で算出する。

$$\theta = \tan^{-1}\left(\frac{\alpha - \beta}{\gamma}\right) \tag{1}$$

ここで α , β は着目する 2 点の鉛直変位で、図-5 の橋脚の 全景においてフーチング隅角部の A~D、橋脚天端の隅 角部 a~d に対応する。 γ は着目する 2 点間の距離で、フ ーチングと橋脚天端の幅または長さに相当する。また、 図-5 では、AB, ab を上流側、CD, cd を下流側、AC, ac を A1 側、BD, bd を A2 側とする。

3.2 解析結果

解析結果は洗掘割合ごとに整理した。橋軸直角周りの 橋脚各部の傾斜角を図-6、橋軸周りの傾斜角を図-7、コン クリートのひび割れの発生状況を図-8、コンクリートの 最大主応力と最小主応力を図-9と図-10、鉄筋の軸方向応

図-6 洗掘割合に対する橋軸直角周りの傾斜角

力を図-11 にそれぞれ示す。なお、図-8~図-11 は A2 側 からの視点で図の右側が上流側である。

図-6の橋軸直角周りの傾斜角は、上流・下流側ともA1 側に傾いた。これは、橋脚上の支点がA1側は可動、A2 側は固定で異なるためだが、傾斜角は極めて小さく最大 でも橋脚天端上流側で0.012度であった。

図-7の橋軸周りの傾斜角では、A1側・A2側の両側と も上流側に傾いた。フーチング・橋脚天端いずれも洗掘 割合が増えるにしたがってほぼ単調に増加し、最大傾斜 角はフーチング A1 側で 1.286 度であった。また、フーチ ングと橋脚天端を比較すると、洗掘割合が増えるともに フーチングの傾斜が大きくなっている。これは橋脚天端 が上部構造により拘束された効果と考えられる。

図-8 のコンクリートのひび割れについては、0%で橋座 にひび割れが発生しているが、解析モデルの要素分割に よるものと考えられる。洗掘によるひび割れは約 40%で 橋座の片持ち部の付け根で発生した。さらに約 60%で橋 脚基部にひび割れが発生し、約 80%で橋脚の上流側前面 に拡大した。また、洗掘割合約 60%以上ではフーチング 下面にもひび割れが発生した。なお、図-9 のコンクリー トの最大主応力は、コンクリートのひび割れと対応した 結果となっている。ひび割れ発生箇所の要素で引張基準 強度の 2N/mm²を上回っていることが確認できる。

図-10 のコンクリートの最小主応力については、洗掘 割合が約 80%で、橋脚基部下流側で Fc21 の圧縮基準強 度程度になる。また、最終段階の洗掘 97%では、橋脚基 部の少数の要素で最小主応力が-28N/mm² となっている が、圧縮基準強度に達する範囲は限定的であり、橋脚に 大きな破壊が発生する状況ではない。

図-11の鉄筋の軸方向応力では、図-10、図-11のコンク リート要素の最小、最大主応力と対応した結果となって いる。軸方向応力の最大値は引張で 4.9N/mm²、圧縮で -8.1N/mm²である。鉄筋降伏強度の 295N/mm²を大きく下回っていることから、鉄筋は塑性化していない。

これらの解析結果から、上流側からの基礎の洗掘によ って橋脚は上流側に傾斜するが、上部構造に拘束される 効果もあり、構造全体が崩壊するような状況には至らな い。しかしながら、橋脚の傾斜やひび割れ、発生応力は 洗掘割合の増加ともに増え、洗掘が進むとコンクリート

(b) A2 側図-7 洗掘割合に対する橋軸周りの傾斜角

要素の圧縮応力も設計基準強度に達する部分がある。本 研究の解析モデルでは、自重のみを考慮し上部構造は線 形部材としているが、非線形部材として損傷を考慮した り、自重以外の外力を考慮したりする場合、傾斜や損傷 の程度が大きくなる可能性もある。このことを考慮して 橋脚の傾斜に対して安全状態を監視する閾値を設けると すると、洗掘割合が重心に近づくとともに、橋脚にひび 割れによる塑性化が発生する洗掘割合40%が、一つの目 安になると考えられる。この時の傾斜角は橋軸周りに約 0.1度であった。なお、洪水時における橋梁としての通行 可否の判断は、単に橋脚の損傷状態のみならず、橋面上 の段差の発生や、橋台および背面土などの状況を総合的 に踏まえてなされるものであることは当然である。

4. まとめ

本研究では、橋脚を有する橋梁を対象として、橋脚基 部が洗掘を受けた場合に、洗掘の進行に伴う橋脚の変状 を数値計算的に検討した。計算結果から、橋脚が橋軸直 角方向に洗掘を受けた場合は、上流側への傾斜が最大で 約 1.3 度発生する。橋脚の損傷は、洗掘が進行すると、 コンクリートにひび割れが発生するが、鉄筋は塑性化せ ず構造系が崩壊するようなことはなかった。しかしなが ら、洗掘割合 40%程度から橋脚にひび割れが発生し、進 展し始めることから、橋脚の応答に基づいて安全閾値を 設定すると、洗掘割合 40%の際に発生する橋軸周りの傾 斜角 0.1 度が安全閾値の目安となり得る。したがって、 今後、橋脚の傾斜をモニタリングする場合のセンサーシ ステムを開発する場合は、安全閾値とした 0.1 度を安定 して検出することができるシステムを開発する必要がある。

今後の課題として、本研究では伸縮装置や上部構造の 非線形を考慮していないため、これらを考慮した解析や 外力として洪水時の流水の作用も検討する必要がある。 また橋梁全体系としては、橋台が洗掘を受けた場合や、 載荷条件についても検討する必要があり、これらを踏ま えて、洗掘に対する橋梁の安全性を確保するための総合 的な対策や、モニタリングシステムの開発を進める必要 がある。

謝辞

本研究は、科学技術振興機構研究成果最適展開支援システム (A-STEP)の助成を受けて実施いたしました。ここに記して感謝 申し上げます。

参考文献

- 玉井信行、石野和也、楳田真也、前野詩郎、渡邊康玄:豪雨 による河川橋梁災害-その原因と対策-、技報堂出版、 2015.
- 2) 土木学会 地震工学委員会 橋梁等の対津波・対洪水設計に 関する研究小委員会:橋梁の対津波・対洪水設計に関する 研究小委員会報告書、pp.1-35 – 1-37, 2020.
- 3) 青木孝樹、武田大樹、水尾隆:国道36号白老町竹浦橋の早 期復旧に向けて一被災から学んだ教訓や工夫について一、 国土交通省北海道開発局第61回(平成29年度)北海道開 発技術研究発表会、防5、2017.
- 4) 日本道路協会:道路橋示方書・同解説(共通編)、p.92,2017.
- 5) 日本道路協会:道路橋示方書・同解説(コンクリート橋・コ ンクリート部材編)、p.45, 2017.
- 6) 土木学会: 2012 年制定コンクリート標準示方書 [設計編]、 p.39, 2013.
- 7) 日本道路協会:道路橋示方書・同解説(下部構造編)、p187-190, p223-224, 2017.