亜硝酸カルシウムを多量添加した セメント系材料の拘束条件下における収縮挙動に関する研究

Study on shrinkage behavior of cementitious materials with large addition of calcium nitrite under restraint conditions

北見工業大学 工学	部 社会環境工学科	○学生員	冨田悠輔 (Yusuke Tomita)	
北見工業大学 工学	部 社会環境工学科	正 員	崔 希燮 (Heesup Choi)	
北見工業大学 工学	部 社会環境工学科	正 員	井上真澄 (Masumi Inoue)	
日産化学(株)		正 員	須藤裕司 (Yuhji Sudoh)	
北見工業大学大学院	工学研究科社会環境工学専攻	、 学生員	米山 曉 (Akira Yoneyama	a)

1. はじめに

寒中コンクリート施工では、コンクリート内部の水分 が凍結することによる初期凍害防止のため所要強度が得 られるまで雪寒仮囲いやヒーターなどを用いた給熱養生 により温度管理をする必要がある。しかし、現場状況が 急傾斜や狭隘、強風など、悪環境である場合には仮囲い の設置が困難である。そこで簡易なシート養生のみで初 期凍害防止や初期強度を確保することを目的として耐寒 促進剤が使用されている。耐寒促進剤は、セメントの水 和反応を促進させ、厳冬期におけるコンクリート打込み 後の初期凍害を防止し、コンクリート中の水分の凍結温 度を低下させ、さらには初期強度を向上させる効果があ る。一方で、耐寒促進剤は許容外気温度が-4~-8℃1) であるが、北海道をはじめとする積雪寒冷地では、日平 均気温が-10℃を下回るのが常であり、耐寒促進剤を 多量に添加する必要がある。耐寒促進剤の主成分として 主に用いられている亜硝酸カルシウムを含む亜硝酸塩系 硬化促進剤は、使用量が増えるほど初期におけるコンク リートの膨張量が増大 2し、その後の収縮量の増大およ びひび割れ発生の懸念が高まると予想されている。しか し、この点に関して物理的に評価した研究は少なく、耐 寒促進剤の特性を把握しないまま多量添加した場合には コンクリート構造物の劣化や、耐久性を損なう要因とな りうる。本研究では、耐寒促進剤の主成分である亜硝酸 カルシウムを多量添加したコンクリートの収縮挙動およ びひび割れの発生・進展に関する挙動を実験的に明らか にするとともに、定量的に評価し、耐寒促進剤を多量添 加したコンクリートの収縮挙動を明らかにすることが目 的である。そこで、亜硝酸カルシウムを多量添加したモ ルタルの収縮挙動および、初期強度発現特性について実 験的検討を行った。

2. 実験概要

2.1 使用材料および配合

使用材料を表1、耐寒促進剤成分を表2に示す。セメ ントは普通ポルトランドセメントを使用し、細骨材は5 号珪砂を使用した。耐寒促進剤は亜硝酸カルシウムを主 成分とする濃度 45%の水溶液(以降 CN)を使用した。表 3 にモルタル配合を示す。水セメント比は 50%とし³、 S/C は既往の研究²⁾を参考に 2.5 とした。CN の標準添加 量はセメント質量に対して約 4~7%とされていること から亜硝酸カルシウムを多量添加した場合を想定し、 CN の添加量を 0%、7%、9%、11%の 4 水準とした。

2.2 実験条件および実験方法

日本建築学会「寒中コンクリート施工指針・同解説」 では、荷下ろし時のコンクリート温度が 10℃~20℃の 範囲になるように考慮することが規定されている¹⁾。そ こで本実験では、コンクリートの練り上がり温度が 10℃~20℃となるように、温度+10.0℃±1℃、湿度 85%±5%の恒温恒湿室で材料の管理を行い、練混ぜを行 った。その後、各種実験を同室内にて行った。

フレッシュ性状は、JIS R 5201 12「フロー試験」に 準拠し、練り上がり直後にフロー試験を行った。圧縮強 度は、 ϕ 5×10cmの型枠にモルタルを打込んだ後、材齢1 日で脱型して恒温恒湿室で封緘養生し、所定材齢 (1,3,7,14 日)において圧縮強度試験を行った。内部温度 は、 ϕ 10×20cmの型枠中央に熱電対を設置し、打込み直 後からのモルタル温度の経時変化を測定した。

細孔構造の経時変化は、MIP(水銀圧入ポロシメーター) を用いて細孔量および細孔径の測定を行った。MIP 用 試料は、圧縮強度試験終了後の試験体中央部から約 5mm 角のものを採取した。採取した試料はアセトンに 4 時間浸漬することで水和停止し、真空チャンバー内に て3日間乾燥を行ったものを使用した。

拘束収縮は、AASHTO PP34-98 で提案されているリング 型拘束試験を参考にし、実験を行った。本実験では外部 リングからの拘束を最小限に抑えるため、外部リングと モルタルの間にテフロンシートを設けた。拘束収縮ひず みはひずみゲージを内部リングの内側中央(37.5mm)に 3 か所貼り付け、打込み直後からひずみの経時変化を測定 した。リング試験概要を図1に示す。

表 1 使用材料

セメント(C)	普通ポルトランドセメント、密度:3.16g/cm ³					
細骨材(S)	5号珪砂、絶乾密度: 2.61g/cm ³ 、吸水率: 0.26%、F.M: 2.16					
亜硝酸塩系耐寒促進剤(CN)	主成分:亜硝酸カルシウム、硝酸カルシウム 密度:1.42~1.44g/cm ³					

混和剤	名	万	戈分	成分割合	4	pН		密度		
CN		Ca(NO ₂) ₂		23.02%)	9.3		1 / 2		
		Ca(NO ₃) ₂		22.81%)			1.43		
表3 モルタル配合										
	W	/C	S/C	単位量(kg/m ³)			CN			
	((%) S/C		W		С	S	(CX%)		
CN0		50	2.5	281				0		
CN7	4			254	562	1407	7			
CN9	50	2.3	246	302	1407	9				
CN11			238			11				

表 2 CN 成分

3. 実験結果および考察

3.1 フレッシュ性状

図2に各ケースにおけるテーブルフロー試験結果を、 図3に打ち込み直後から2時間までにおけるモルタル 内部の温度履歴を示す。

図 2 のテーブルフローの結果を見るとフロー値は CN0 は 186mm となっており、CN 無添加のケースと CN を添加したケースとのフロー値の差は CN7 は 6.5%、 CN9 は 9.2%、CN11 は 25.9%減少となり、CN の添加量 が増えるほどフロー値は低下する傾向がみられた。図 3 の打込み直後から 2 時間の温度履歴と比較してみると、 CN 添加量が多いものほど初期に温度が上昇しているこ とがわかる。CN を添加すると通常の水和反応で生成さ れるものに加えて亜硝酸イオンと硝酸イオンが Al₂O₃ と 急激に反応し、亜硝酸・硝酸系水和物を生成することが 知られている ⁴⁾⁵⁾。これにより CN 添加量の増加によっ て水和が促進されモルタル温度が上昇し、流動性が低下 したと考えられる。

3.2 強度特性

図4に各ケースにおける材齢1日から材齢14日までの 圧縮強度を、図5に打ち込み直後から24時間までの モルタル内部温度の経時変化を示す。

図 4 を見ると、材齢 1 日の圧縮強度は CN0 は 4.38MPa、CN7 は 5.15MPa、CN9 は 6.51MPa、CN11 は 7.03MPa となっており、CN 添加量が多いものほど強度 が大きくなる傾向が見られた。ここで図 5 の打込み直 後からの温度履歴を見ると、CN の添加量が多いものほ ど 0~4 時間あたりの温度ピーク(I)が高くなり、6~18 時間あたりの温度ピーク(II)が高くなるのに加え、ピー クが早くなっていることを確認した。CN を添加すると 亜硝酸イオンと硝酸イオンの量が増えて水和が促進され ることでモルタル温度が上昇し、多量の水和物が生成さ れることにより、材齢1日では強度が増進したものと考 えられる。しかし、材齢3日の圧縮強度は、CNの添加 量が増加するほど強度発現が下がる傾向にある。材齢 7 日以降ではその傾向が顕著になるとともに、CN を添加 した全ての配合で CN0 の強度を下回った。これは針状 結晶である亜硝酸・硝酸系水和物の生成量の増加により その後の強度発現に影響を及ぼしたものと考えられる。

図5 打込み直後から24時間の温度履歴

3.3 空隙構造の経時変化

図 6 と図 7 に細孔径分布の経時変化を示す。図 6 を 見ると材齢1日において、CN0では0.5~5µmの範囲で 細孔径が分布しているのに対し、CN を添加したケース では、空隙量および空隙径が小さくなる傾向がみられた。 特に、CN を多量添加したケース(CN9、CN11)では、 0.01~0.1µm あたりの空隙が多くなっており、毛細管空 隙の中でも乾燥収縮に大きく寄与する 0.05µm 以下の範 囲で最も多い結果となった %。この材齢1日における空 隙の充填は、強度特性でも述べた CN 多量添加による水 和促進によるものと考えられる。図7の材齢14日では すべての配合で 0.1µm~5µm の範囲での空隙量が減少す る傾向を示した。さらに、CN0 と CN を添加したケー スを比較すると、CN を添加したケースの方が 0.1~ 10µm の範囲で細孔径が多いことが確認され、さらには、 CN0 のものは 0.05um 以下の細孔径は少ない傾向にある。 これらの結果から、材齢1日時点では CN0 のケースは まだ乾燥収縮がほとんど起こっておらず、CN を添加し たケースではすでに乾燥収縮が起こっていると考えられ J¹⁰

図 7 細孔径分布(14day)

3.4 拘束収縮ひずみ

リング試験による拘束収縮ひずみを図8に示す。打 込み直後から測定された拘束収縮ひずみが0になる時点 がひび割れが発生した時点である。表4に各試験体に おけるひび割れの発生状況及びひび割れ発生までの日数 を示す。CN を添加した場合の拘束収縮ひずみは、打込 み初期から材齢1日までは変化が小さいものの、材齢1 日から急激に収縮量が増加し、その増加過程で貫通ひび 割れが発生することを確認した。貫通ひび割れの発生時 点は CN11>CN9>CN7の順で、それぞれ2.8日、3.6日、 4.4日(表4)であった。さらに、ひび割れ発生時点の拘束 収縮ひずみは25~30μ程度であった。一方、CN0では、 本実験の測定期間中にはひび割れが発生しなかった。

3.5 拘束引張応力およびひび割れポテンシャル

拘束引張応力はリング試験体に打込んだコンクリート が線形挙動することで収縮が全断面で均等に発生すると 仮定して、コンクリートと鋼材リングの半径および鋼材 リングの拘束収縮ひずみと弾性係数を用い、式(1)から 求めることができる⁷。

$$\sigma_{\theta imax} = \frac{(\gamma_{os}^2 - \gamma_{is}^2)}{2\gamma_{os}^2} \cdot \frac{(\gamma_{im}^2 + \gamma_{om}^2)}{(\gamma_{om}^2 - \gamma_{im}^2)} \cdot E_{st} \cdot \varepsilon_{st}$$
(1)

ここで、 σ_{0imax} は拘束引張応力、 γ_{is} 、 γ_{os} は鋼材の内部および外部の半径、 γ_{ic} 、 γ_{oc} はコンクリートの内部および外部の半径、 E_{st} は鋼材の弾性係数、 ε_{st} は拘束収縮ひずみを示す。

式(1)から求めた拘束引張応力を図9に示す。拘束引 張応力は拘束収縮ひずみの増加とともに増加する傾向を 示し、約1.8~2.0N/mm²の最大拘束引張応力に到達後、 ひび割れが発生した。CNの添加量が増加するほど、内 部鋼材リングに発生する圧力の増加により拘束引張応力 は増加し、これによってモルタルのひび割れの発生が早 くなることが確認できた。これは引張クリープによる応 力緩和が減少したことが原因と考えられる。

一方、ひび割れポテンシャルは拘束引張応力/引張強 度で各材齢における応力強度比によって算出した。図 10に引張強度を、図 11 に各試験体のひび割れポテンシ ャルを示す。引張強度は圧縮強度の結果を利用して式 (2)から算出した⁸。

引張強度
$$\sigma_B = 0.291 \cdot Fc^{0.658}$$
 (2)

ここで Fc は圧縮強度を示す。

CN の添加量が増加するほどひび割れポテンシャルは 大きくなり、CN を添加したものでは添加量に関わらず CN0 と比べて本実験の拘束条件の範囲では、収縮によ るひび割れ発生の可能性は早期に非常に高くなることが 確認できた。これらの結果から、本実験の拘束条件の範 囲では CN を多量添加することで、コンクリートの収縮 が増加するとともに、ひび割れ発生の可能性が非常に高 くなることが示された。

4.まとめ

本研究では、亜硝酸カルシウムを多量添加したコンク リートの収縮挙動を明らかにすることを目的として、 CN を添加し、低温環境下での強度発現性と拘束収縮お よびひび割れについて実験的検討を行った。以下に、本 研究の範囲で得られた知見をまとめる。

- 1) CN を多量に添加すると水和が促進されることで、 空隙が充填され、材齢初期の強度が向上することが 確認できた。
- 2) CN 添加量が増えると無添加のケースと比べて材齢 1 日から乾燥収縮に寄与する 0.05µm 以下の空隙が 増えたことから、拘束収縮が非常に大きくなり、収 縮の開始時点も非常に早くなった。
- 3) 本実験の拘束条件の範囲では、拘束収縮ひずみと算 出したひび割れポテンシャルの結果から、CN を多 量添加するとコンクリートの収縮量が増加するとと もに、ひび割れ発生の可能性が非常に高くなること が示された。

- 1)日本建築学会:寒中コンクリート施工指針・同解説、第5版第1 刷,pp.252-254,2010.1
- 2) 岩澤実和、井上真澄、崔希燮、須藤裕司: 亜硝酸塩系硬化促進剤と各 種減水剤を用いたモルタルのフレッシュ性状および強度発現性に関す る研究,コンクリート工学年次論文集,Vol.40,No1,pp.243-248,2018
- 3)国土交通省 通年施工推進協議会:耐寒剤運用マニュアル(案),pp.11-12,2005.3
- 幸雄、鎌田 英治:無塩化、無アルカリ型防凍性混和剤による初 4)浜 期凍害の防止効果、コンクリート工学年次論文集 Vol.7,No.1,pp.113-122,1996
- 5)Ramachabran, V.S. Handbook, Concrete Asmixture Noves Publications, U.S.A., pp. 741-799, 1995
- 6)P.KumarMehta,Paulo .M.Monteiro:CONCRETE,Microstructure,
- 7)Properties, and Materials Second Edition
- 8)Hossain AB, Weiss WJ. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites. 2004 Jul;26(5):531-40. 9)Noguchi T, Tomozawa F. Relationship between compressive strength and
- various mechanical properties of high strength concrete. Journal of Structural and Construction Engineering. 1995 Jun;60(472):11-6. 10)Hyeonggil Choi,Juncheol Lee,Bokyeong Lee,Jeongsoo Nam.Shrinkage
- properties of concretes using blast furnance slag and frost-resistant accelerator. Construction and Building Materials 220 (2019) 1-9