円錐地形上で屈折する波浪に関する実験的研究

Impact on the surrounding waves by conical obstacle

北海道大学工学院 ○学生会員 北海道大学大学院工学研究員 正会員

中山隆仁 (Nakayama Ryuto) 猿渡亜由未 (Saruwatari Ayumi)

1. はじめに

2004年12月26日のインドネシア,2011年3月11日の 日本での津波により,人々や経済に多大な損害を与えた ことなどから,近年世界的に津波に対する調査や,津波か ら命を守るための意識改革,津波被害へのリスク対策な どへの関心が高まっている.津波の大きさを表す尺度と して主に用いられるのが津波の遡上である.これまで、本 土近傍に位置する小さな島々は本土での津波の遡上を防 ぐ機能があると考えられてきた為,諸島の背後に位置す る本土の沿岸部は居住区として栄えてきた,しかし,近年 の津波の調査や、シミュレーションを繰り返し行った結 果,円錐形の小島は津波の遡上から本土を防護する機能 はなく,反対に津波が小島に衝突した後,小島の汀線で波 が屈折し小島の両側から回り込み背後領域で再び重なり 合うことにより,津波の波高を増大させ,波の遡上を増大 させる傾向があることがわかった.また,波は小島に捕捉 され,汀線上にトラップされることで周期が増大するこ とがわかった.実際に、1992年12月12日のバビ島での津 波では,津波の周期が増幅したことで,津波に対して正面 側の沿岸部に比べ背後領域において高い遡上が計測され た.

このような円錐形の小島を通過する波浪の屈折につい ては古くから理論的な研究が行われてきたが,屈折波同 士が干渉する円錐背後では,波向線が交差してしまい理 論解が導出できない領域が発生し得る.よって本研究で は,平面水槽を用いてこの現象を実験スケールで再現し, 円錐形周りにおける基本的な波の変動の特徴を明らかに する.

2. 計算例

2次元平面水槽内での円錐周りにおける屈折,変形を 次式で表される浅水流方程式を用いて,流速,波高を計算 した.(図-1)図中左端から周期2.95sで造波しており,中 央の円錐の汀線で屈折し,1点で干渉し,波高の増大が確 認できるが,遡上現象を含む流れ場を数値的に正しく計 算することは困難であるため水理実験にて検証を行う.

$$H\frac{\partial\overline{U}}{\partial t} + H\overline{U}\frac{\partial\overline{U}}{\partial x} + H\overline{V}\frac{\partial\overline{U}}{\partial y} = -\frac{H}{\rho}\left(\frac{\partial Ps}{\partial x} + \rho g\frac{\partial \eta}{\partial x}\right) - \frac{\tau x}{\rho}$$
(1)

$$H\frac{\partial \overline{V}}{\partial t} + H\overline{U}\frac{\partial \overline{V}}{\partial x} + H\overline{V}\frac{\partial \overline{V}}{\partial y} = -\frac{H}{\rho}\left(\frac{\partial Ps}{\partial y} + \rho g\frac{\partial \eta}{\partial y}\right) - \frac{\tau y}{\rho}$$
(2)

図-1 任意の時刻における計算結果

表-1 実験条件

表-1 実験条件		
波条件 (正弦波)	波高(mm)	1.99,1.23,3.29
	周期(sec)	0.91,1.07
	波速(cm/sec)	53.2,88.5,54.3
	初期位相	引き初動
円錐の位置	造波板からの位置(cm)	15,10
円錐勾配	1/4.8,1/3.8	
円錐の高さ(cm)	8.0,8.6	
水深(cm)	6.0	

円錐のり面勾配 1/2.4:(1)T=0.7s,(2)T=0.9s,(3)T=1.07s 1/1.4:(4)T=0.7s,(5)T=0.9s,(6)T=1.07s

図-6 各 θ に対応する汀線位置の水位変化. 円錐のり面勾配 1/2.4:(1)T=0.7s,(2)T=0.9s,(3)T=1.07s 1/1.4:(4)T=0.7s,(5)T=0.9s,(6)T=1.07s

3. 実験方法

3.1 実験概要

実験で対象とした円錐ののり面勾配は,1/2.4 および 1/1.4 であり、主要な実験条件は表-1 に示す通りである. 実験で使用した水槽の諸元は長さ 152cm,幅 90cm,高さ 20cm であり,造波装置が装備されている.実験水路の全景 を図-3 に示す.一様水深部の水深を 6.0cm とし.水槽中央 部に円錐を設置し(図-2),そこに波の屈折現象を再現した.

3.2 計測方法

実験に用いた入射波は、有義波周期Tが0.9sおよび1.07s および 0.70s の3種類,用いた円錐ののり面勾配は 1/2.4 および 1/1.4 の2種類で実験は全6ケースをとした.円錐 表面は水に溶けにくい石油性のワックスを使用しており, 高い撥水性を持っている.ここで,岸沖方向に x 軸,スパン 方向に y 軸, 円錐中心から岸沖方向に直線を引き交わる 点から時計反対方向の向きを正としてθ,円錐の中心座 標から対応するθにおける汀線までの距離を半径 r(mm) と定義する(図-4)。水槽内には 5mg/L のウラニン水溶液 (ピーク吸収波長 494nm,ピーク蛍光波長 521nm) で満 たし,円錐近傍から LED ライトで水面を照射し,水面を励 起発光させた.LED ライトは青色のカラーフィルター に 向けて照射しており,450~490nmの波長の可視光線を発 している.励起発光する溶液はレンズ前面に光学フィル ターを装置した CCD カメラ(解像度 1280×1024)を水槽 上部に設置した.撮影は円錐の底面の先端位置に設置し た容量式波高計1が20mv以上の電圧変化を計測した瞬 間に 30~40ms 毎に撮影を行うトリガーを設定した.なお, 波高計1と波高計2は10cm離れている.また、実験ごとの バラツキを考慮して1ケースについて3回以上行い、そ の平均値を用いた.

撮影画像には,メディアンフィルターをかけノイズ処 理を行ったのち,画像輝度の勾配がピークとなる位置を サブピクセル精度で検出し,そこを汀線と定義した.

4. 実験結果

4.1 汀線における水位変化

波の屈折減少による汀線位置の水位変化を図-5,図-6 で 示している.図-5 を見ると、水槽沖側のθ=180°付近に波 が到達し、円錐の汀線に沿って波が進行している様子が わかる.また, θ=90°および θ=270°で水位変動は減衰 し,再び θ=0°および θ=360°付近で増大している.この ことから,円錐の両側から汀線を沿って進行してきた波 が円錐の背後領域で重なりあっていることがわかる.ま た円錐の形状により,円錐の汀線周りに波が捕捉され,入 射波と円錐に捕捉された波が重複波的に関わり,3,4 波目 の汀線での水位変化に影響を及ぼしている可能性がある. 図-6 は、10°毎の汀線の水位変化の平均を示してお り,analog1 および analog2 はそれぞれ容量式波高計 1 と 2の測定データを示している.図-6 では、水槽沖側から 岸側にかけての水位の変動を定量的に表している.水槽 R170-180(170°≦ θ ≦180°での水位変化の平均)で最大 の水位変動が起こり,円錐背後領域 R0-10 にかけて減衰 の後増大することがわかる.さらに、入射波高と比較して

沖側の汀線での水位変動は著しく大きく,円錐の背後領 域でも入射波高より大きくなることがわかる.

4.2 波長と円錐のり面勾配が与える影響

入射波の波長および円錐ののり面勾配が汀線位置にお ける水位変動にどう影響を及ぼすのかについて見てみる. 図-6.(1)~(3)で比較してみる.図-6.(1)を見ると,水槽沖側の 水位変動は円錐背後領域のもの比べて 1.5~3 倍以上大き いのに対し,図-6.(2)および(3)は水槽沖側の水位変動は円 錐背後領域とほぼ同程度のものであることがわかる.さ らに図-6.(2)では 3,4,5 波目と円錐に捕捉された波の影響 で水位変動が増大傾向にある.図-6.(1)(4),(2)(5),(3)(6)を それぞれ比較すると,緩勾配の円錐は急勾配の円錐に比 べて,汀線での水位変動が大きく,その変動も増加傾向に あることがわかる.

5. 結論

今回,円錐形周りの基本的な特性を理解することを目的 とし平面水槽を用いて実験的な研究を行なった.その結 果以下の知見が得られた.

 円錐に波が衝突した際,衝突面だけでなく円錐背後 領域でも波高が増大する.

2) 波の屈折効果により円錐汀線に沿って波が捕捉され,

- 入射波と重複波的な影響を及ぼす可能性があること.
- 円錐の形状,入射波の条件が,汀線周りの水位変動や 波の捕捉,増減に寄与する.

6. 参考文献

1)Liu, Cho, Briggs, Kanoglu and Synolakis. Runup of solitary waves on a circular island. J. Mech., Vol. 302, pp. 259–285, 1995.

2)Liu, Shi, Cui, and Kim. Experimental study on overtopping performance of a circular ramp wave energy converter. Renewable Energy, Vol. 104, No. Supplement C, pp. 163 – 176, 2017.

(3)藤間功司・後藤智明:円錐形の島に捕捉された長波の特性,土木学会論文集,1994.8

(4)中野 晋・三島豊秋・中野孝二・三井 宏:サーフィンに適するデルタ型リーフ周辺の波浪特性

(5)合田良実:屈折効果を利用した縦型人工リーフシス テムの特性について,土木学会論文集,2000.11