鋼構造部材の点群モデルから変換したFEMモデルの精度に関する一検討

A consideration on a precision of an automated transferred FE model from a point cloud model of a steel structural member

北見工業大学大学院	学生会員	鈴木紗苗 (Sanae Suzuki)
北見工業大学	○正会員	宮森保紀 (Yasunori Miyamori)
北見工業大学	正会員	齊藤剛彦 (Takehiko Saito)
北見工業大学	正会員	山崎智之 (Tomoyuki Yamazaki)
北見工業大学	正会員	三上修一(Shuichi Mikami)
北見工業大学工学部	学生会員	ムンフジャルガルダンビーバルジル(Dambiibaljir Munkhjargal)

1. はじめに

CIM の施行により3次元モデルを構造物の維持管理に 役立てようという取り組みの研究が進んでいる.構造物 の3次元点群モデルを保有性能の定量的な評価に有効に 活用するためには、点群モデルを FEM などの構造解析 可能なモデルへ変換する必要がある.既往の研究では、 構造全体系のモデル化として BIM を発展させて FEM を 構築した Banfi et.al.¹⁰や、歩道橋全体を対象とした Conde-Carnero et.al.²⁰の研究がある.これらの FEM モデ ル作成の工程では3次元 CAD を経由していたり、点群 からメッシュを作成する際スムージングを行っていたり しているので、損傷や腐食などの情報が失われてしまう 可能性がある.

そこで、これまで著者らは鋼構造部材を対象として損 傷などの情報を欠落させずに写真から作成した点群デー タを直接 FEM モデルに変換する手法について検討して きた³⁴⁾.本研究では鋼構造部材の部分的な腐食を想定 し、部材の一部を2段階で減肉させた供試体2種類を対 象として、点群モデルから自動的に FEM データに変換 する方法について検討し、点群データから構築した FEM モデルの精度が FEM の応力結果にどのような影響 を及ぼすのかについて検討した.

実験供試体の静的載荷実験と比較 FEM モデル 1 対象供試体

図-1に示すような設計図面の鋼製のT形梁を対象供試体とした.材質はSS400,全長2090mm,高さ410mm,幅360mm,部材厚は上フランジ20mm,ウェブ13mmである.対象供試体は、実験室のフレームに取り付けたブラケットにウェブの両端を4本のボルトで固定した.

また,段階的な腐食の進行を模擬するため,供試体一部分を2段階で切削した.まず,供試体支間中央から-x 方向に70mm離れた位置でウェブの板厚が約半分の7mm となるようにグラインダーとやすりによって片側から切 削した.この供試体を減肉供試体と称する.次に,最初 に切削した箇所を全て切削した.この供試体を全切削供 試体と称する.応力集中が起こりにくいように切削部の 周辺にはテーパーをつけている.

2.2 静的載荷実験

本研究では、実験供試体に対して静的載荷を行ってひ ずみを測定し、FEM 解析結果と比較してモデルの妥当 性を検証する.載荷実験は油圧方式の静的100kN載荷試 験機を用い,支間中央に90kN載荷した.また,図-2の ようにウェブの両面計12箇所に3軸ひずみゲージを貼 り付け,載荷時に測定した.

2.3 比較 FEM モデル

点群から作成した FEM モデルの応力状態と比較する ために、寸法の実測値に基づき FEM ソフトウェア上で モデルを作成した.使用したソフトウェアは midas Civil 2010である.ソリッド要素を用い、節点座標を xyz 各方 向で約 10mm ごとに設定した.材料は SS400 材で弾性係 数は E=200,000(N/mm²)とした.ウェブの切削状況に合 わせて2種類のモデルを作成し、それぞれ減肉比較 FEM モデル、全切削比較 FEM モデルと称する.支点条件は、 実験と同様となるようボルト位置において節点を並進方 向固定とした.また、載荷条件は鉛直方向下向きの荷重 90kN を支間中央のフランジ上面の 138 節点に分散して 与えた.

2.4 比較 FEM の妥当性の検討

載荷実験のひずみから部材軸方向に対する垂直応力度 を算出し,比較 FEM モデルの解析結果と比較した(図-3). 比較 FEM については各ひずみゲージと同じ位置の1ソ リッド要素を構成している各節点の応力の平均値を算出 している.軸方向の応力に着目した理由として,実験と 比較 FEM モデルの結果ではそれ以外の方向の垂直応力 度は非常に小さかったためである.

比較 FEM モデルの応力値は弾性範囲内で全体的に小 さい. 全体の傾向として,各ひずみゲージ位置での応力 の大きさと減肉状態から切削状態への応力の変化がおお むね実験値と整合している.例えば,載荷点直下の①, ②では圧縮応力が作用しており,減肉状態でも切削状態 でも実験結果とほとんど同値である.また,⑤,⑥では 表と裏側で応力の増加や減少が同傾向である.全体的に 実験結果の方が比較 FEM モデルの結果よりも応力値が 大きい結果となった理由としては,比較 FEM モデルで の支点部は並進固定としているが,実際に載荷した際の 状態は複雑であり,それぞれのボルトの拘束具合には差 異があるため全体的に大きい変化として現れたと考えら れる.したがって,応力値はおおむね一致しており,比 較 FEM モデルによって実際の応力状態を把握できると 判断できる.

図-2 3軸ひずみゲージ貼り付け位置

3. 点群データの作成と精度検証

3.1 撮影と点群データ生成

撮影に使用したデジタルカメラはソニー製の α6500 で ある. jpeg 形式で記録画素数は 4240×2832pixel, F 値は 8 に設定した. ISO 感度は減肉供試体は 400, 全切削供 試体は100に設定した.鋼材は溶接部や切削部を塗装し ていないため、光の反射が起こりそうな箇所には撮影前 にチョークでなぞることで反射を防いでいる.供試体を 多方向からオーバーラップ 80%以上で撮影し, 減肉供 試体は 550 枚, 全切削供試体は 594 枚の写真を撮影した. 次に Agisoft 社の PhotoScan Pro を用いて、図-4 に示すよ うに点群モデルを生成させた.減肉供試体から作成した 点群モデルを減肉点群モデル、全切削供試体から作成し た点群モデルを全切削点群モデルと称する.本研究で使 用した基準点と検証点は図-4の示すとおりに対象全体を 囲むような位置と供試体上に配置した. 基準点と検証点 の座標は定規と水準器を用いて計測した.基準点は供試 体の外側と供試体上に 15 点設置し、検証点は供試体上 に3点設置した.基準点の場所には直径85mmの紙製で 円形のマーカーを設置した. このマーカーは全て異なる 模様で、基準点または検証点となる中心は直径 2mm の 白い円となっている.

3.2 点群精度の検証

PhotoScan による点群モデルの精度検証結果について、 撮影条件は異なるが基準点全体の誤差はそれぞれ減肉点 群モデルでは、3.755mm,全切削点群モデルでは 4.048mmであった.検証点の3方向の誤差はどの箇所も 4mm以下であった.2つの点群モデルでは、ISO感度を 変更して撮影を行っている.一般に、ISO値が高いほど 画像にノイズが発生するとされているが、ISO感度を 400と設定した減肉点群モデルでは PhotoScan 上での板 厚の計測値が均一ではなく、計測箇所によって値に幅が あった.しかし、ISO感度を 100に変更した全切削点群 モデルは板厚が均一になりモデルそのものの形状の歪み は小さくなった.基準点の誤差の原因の一つとして、供 試体をフレームに設置したため断面側からの写真を撮影 できなかったことやウェブ下のスペースに十分な高さが なく、適度な距離からの写真を撮影できなかったためと

(a) 減肉点群モデル(約139万点)

(b) 全切削点群モデル(約736万点) 図-4 3次元点群モデル

考えられる.モデル全体としての評価は,減肉や切削箇 所について,テーパーのある断面を表現でき,さらに点 群モデルの精度については写真撮影方法や基準点の座標 などを改善することで精度向上が期待できる.

4 点群 FEM モデルの構築⁴⁾

3 次元点群モデルの点群数は FEM モデルの節点数と 比較すると膨大であるため,本研究では FEM モデルの 節点を構築するため,空間に一定間隔の格子を設定して 格子内の点の平均座標値により1つの節点を生成させる ようにした.さらに各点の両隣の点との平均距離の標準 偏差以上の点をノイズ点とみなしてノイズ除去を行った. なお,x 方向の座標値については,次に述べるソリッド 要素構築を yz 平面ごとに考えるため,x座標値は格子の 間隔にそって等間隔になるように丸めた.

ソリッド要素の構築方法は、まず x 座標における yz 平面を考え、この平面上の節点の集合に対して輪郭を作 成する.輪郭を求める際の縮小係数は試行錯誤的に 0.9 とした.この輪郭に対して2次元デローニー分割を行い、 x 座標値ごとに部材断面が三角要素で分割される.この 処理を隣接する各断面で行う.さらに、断面にある三角

図-3 全体座標の軸方向に対する垂直応力度

形要素の各点について,隣接する断面の最近傍の点を探 索し,これらの点を結ぶことでソリッド要素を作成した. このような工程で生成した要素の形状は4節点及び6節 点の2種類のソリッド要素となっている.なお点群FEM モデルでは,支点部付近(x<0.2m, 1.8m<x)を除いてモデ ル化した.

節点と要素に加えて、材料物性や単位系など解析に必要な情報も汎用 FEM ソフト(midas Civil 2010)に対応した
mct ファイルに書き出す.

最終的な節点数は、減肉点群 FEM は 47.391 点、全切 削点群 FEM は 13,438 点になった. また要素数はそれぞ れ40,974 要素,40,380 要素となった.なお,作成した要 素の中には、形状が扁平なものなど FEM 解析では不適 切な要素も含まれる. FEM ソフトウェアではこれらの 要素を除いてデータを読み込んだ. このようにして点群 モデルから構築した FEM モデル(以下点群 FEM モデル と称する)を図-5に示す.図-5では上フランジとウェブ の接合部の一部に実際にはないリブ状の要素が作成され ている箇所がある.これは,輪郭作成時の処理で接合部 の隅角部が十分に認識できなかったためである.また, ウェブ下端の板厚減少部については、一部に要素の欠損 があるものの、板厚が部分的に減少している様子が点群 FEM モデルでも表現できている. 点群 FEM モデルの解 析精度を検証するため、このような実際とは異なる要素 や欠損もそのまま解析を行った.

5. 点群 FEM の妥当性の検討

点群 FEM モデルに対して,載荷実験と同様の境界条件と荷重条件を設定した.点群 FEM モデルは支点付近 を除いたモデルとなっており,端部の節点に並進方向固 定として境界条件を設定した.荷重条件は支間中央で 90kN を減肉点群 FEM モデルには 568 節点,全切削点群 FEM モデルには 534 節点に等分割して鉛直方向下向き に与えた.

まず,図-6(a)(b)にそれぞれ減肉比較 FEM モデルと減 肉点群 FEM モデルの有効応力分布を示す. 切削箇所や 支点付近ではどちらのモデルも応力が高くなっている. このことから、減肉点群 FEM モデルによって損傷を受 けた構造物の実応力を把握できるようになる可能性があ る. また, 支点と支間中央との間で応力が小さくなる箇 所など、全体的な応力分布が整合しており、構造全体で モデル化が妥当に行われている.次に、図-7(a)(b)にそ れぞれ全切削比較 FEM モデル,全切削点群 FEM モデル の有効応力の結果を示す.切削部や支間中央と支点の中 央で応力が小さくなる傾向は減肉モデルと同様に応力分 布が整合している.また、載荷直下である支間中央の切 削部近辺では応力が小さくなっている傾向も同じであっ た. どちらの点群 FEM モデルもテーパー部分の応力分 散ができており、応力が概ね徐々に変化していくのを確 認することができた.しかし,減肉や切削部の周辺では 特に応力値が高なっている.これは、板厚が薄くなって いるためと考えられる. 図-8 は x=520mm の断面の板厚 を鉛直方向に対して表している.減肉点群モデルの板厚

が大きく変化している原因としては ISO 感度の設定によ って元の点群が歪んだためである.全切削モデルでは全 体に板厚が薄いが,ひずみはなく接合部付近までほぼ均 等な板厚でモデル化できている.一部の要素ではコンタ ーの表示範囲を超過した応力となっている.これらの箇 所では板厚の精度に加えて,ソリッド要素の形状や要素 欠落があることも原因と考えられる.要素生成アルゴリ ズムの改良が必要である.

6. おわりに

本研究では鋼構造部材の部分的な腐食を想定し,部材 の一部を減肉させた供試体を対象として,デジタルカメ ラを用いて取得した点群データから自動的に構造解析可 能な3次元モデルに変換する方法についてその精度につ いて検討した.

- 鋼製T桁梁供試体の3次元点群モデルを作成し精度 を検証した.検証点の誤差は約4mm程度であった. 減肉したウェブの断面変化や切削箇所を点群モデル に表現できた.さらにISO感度を低く設定すること で精度が向上することを確認した.しかしながら, ウェブの板厚の計測値や基準点の誤差があり撮影す る距離や場所に制限がある場合の撮影方法の確立が 必要である.
- 2) 自動で構築した点群 FEM モデルの線形静的解析を 行った.比較対象として実測寸法から作成した FEM モデルの有効応力との比較を行った.その結 果は、全体的な応力分布が把握でき、板厚減少位置 や切削部における応力増加も把握できたため将来的 には損傷を受けた鋼構造物の部材の応力評価に応用 できる可能性がある.しかしながら、点群 FEM の 応力結果は元の点群の精度に依存するため適切な撮 影条件で点群データを取得することが必須である.

謝辞:本研究は,科学研究費 基盤(C)課題番号 18K04317の助成を受けて実施しました.ここに記して 感謝いたします.

参考文献

- F. Banfi, S. Fai, R. Brumana: BIM AUTOMATION: Advanced Modeling Generative Process for Complex Strucutures, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W2, 2017.
- B. Conde-Carnero, B. Riveiro, P. Arias, J. C. Caamaño: Exploitation of Geometric Data provided by Laser Scan-ning to Create FEM Structural Models of Bridges, Journal of Performance of Constructed Facilities, Vol.30, Issue 3, 2016.
- 3) 鈴木紗苗,宮森保紀,齊藤剛彦:高密度点群データの構造解析モデルへの変換に関する基礎的検討,土木情報学シンポジウム講演集,Vol.43, pp.25-28, 2018.
- 4) 鈴木紗苗,宮森保紀,齊藤剛彦,山崎智之,ムンフジャ ルガルダンビーバルジル:鋼構造部材の3次元点群モデ ル構築とFEMデータへの自動変換に関する検討,土木情 報学シンポジウム講演集, Vol.44, pp.53-56, 2019.

