強風イベント時における日本海,太平洋での内部波振動モード

Vibration mode of internal waves in Japan Sea and Pacific Ocean with a storm event

北海道大学工学院 o学生員 足立 天翔(Amato Adachi) 北海道大学大学院工学研究院 正会員 猿渡亜由未(Ayumi Saruwatari) 函館工業高等専門学校 正会員 宮武誠(Makoto Miyatake) 北海道大学大学院工学研究院 正会員 渡部靖憲(Yasunori Watanabe)

1. はじめに

津軽海峡は対馬暖流の支流である津軽暖流と親潮の影響 により豊かな生態系が形成されており,古くから漁業が盛 んに行われてきた海域である. また,海峡東西に位置する 狭窄部に潮流,海流が流れ込むことにより2ms⁻¹に達する 大きな流速を有しており,近年このエネルギーを利用した潮 流,海流エネルギー発電の計画が函館市で推進されている.

海峡内は地形や潮汐の影響により複雑な流れ場が形成さ れており,共著者らはこれまでに現地観測や数値解析によ り津軽海峡周辺の流況特性について調査を行ってきた.そ の中でも本間ら¹⁾が行った数値解析により,成層構造が強 くなる夏季において台風通過に伴う内部波及び海峡内流れ 場の乱れが発生することが明らかとなった.この乱れには 海峡内の複雑な地形に加え海峡を挟む日本海及び太平洋で 発生する内部波の影響を受けていると考えられるが,台風 通過に伴う外洋における内部波の発達過程については未解 明である部分が多い.

そこで本研究では三次元流れモデルを用いた数値解析に より,夏季における台風通過に伴う日本海及び太平洋に発 生する内部波を再現し,動的モード分解による内部波振動 モードを調べることを目的としている.

2. 計算方法

 ρ

2.1. 三次元流れモデル

非静水圧三次元流れモデルであるMIT general circulation model(MITgcm;Marshall et al.1997³⁾⁴⁾)を用いて計算 を行った.このモデルでは次式で表される運動方程式, 質量 保存則, 状態方程式, トレーサー(ポテンシャル水温, 塩分) の輸送方程式に基き, 流速, 密度, 水温, 塩分を計算する.

$$\frac{D\boldsymbol{u}}{Dt} = -\frac{1}{\rho}\boldsymbol{\nabla}_h p + (2\Omega \times \boldsymbol{u})_h + \boldsymbol{F}_h \tag{1}$$

$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + (2\Omega \times \boldsymbol{u})_v + \boldsymbol{F}_v$$
(2)

$$\frac{1}{\rho}\frac{D\rho}{Dt} + \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \tag{3}$$

$$= \rho_0 [1 - \alpha (T - T_0) + \beta (S - S_0)]$$
(4)

$$\frac{D\theta}{Dt} = \boldsymbol{\nabla} \cdot (\kappa K \nabla \theta) + \boldsymbol{F}_{\theta} \tag{5}$$

$$\frac{DS}{Dt} = \boldsymbol{\nabla} \cdot (\kappa K \nabla S) + \boldsymbol{F}_S \tag{6}$$

ここで u_h ,wは水平,鉛直方向流速,pは圧力, ρ は密度, θ は ポテンシャル水温,Sは塩分である. (1)(2)式の右辺第1項は 圧力勾配,第2項はコリオリ力, F_h , F_v は水平,鉛直成分の その他(粘性,拡散,風応力,底面側面摩擦など)の外力及 びメトリック項を表す. (5)(6)式の右辺における κ は等密 度線方向への温度拡散係数,Kは水平,鉛直方向から等密

図-1 モデル台風.

度線とそれに直交する方向への座標変換テンソルである. 本研究では水面の境界条件として海水面温度SSTと海水面 塩分 SSSを与えているが F_{θ} , F_S はそれぞれSST, SSSが境 界条件を満足するようにモデル内で計算される.非静水圧 力は(1)(2)式から導かれる次式の圧力に関するポアソン方 程式を解くことにより求める.

$$\boldsymbol{\nabla}^2 \phi_{nh} = \boldsymbol{\nabla} \cdot G_v - (\boldsymbol{\nabla}_h^2 \phi_s + \boldsymbol{\nabla}^2 \phi_{hyd}) \tag{7}$$

ここで $\nabla^2 \phi_{nh}$, $\nabla^2 \phi_{hyd}$, ϕ_s はそれぞれ非静水圧,静水圧,水 位上昇による静水圧変化である. G_v は運動方程式の圧力 勾配以外の外力項をまとめたものである.本モデルによる 再現性については本間ら¹⁾により確認されている.

2.2. モデル台風

本研究では純粋な台風のみの影響を調査するため, 台風 モデルを用いて日本海及び太平洋を通過する2つの典型的 な台風を作成し海上風速と海面気圧として入力した. 海面 気圧の分布として次式に示すMyers²⁾のモデルを用い, 海上 風として気圧傾度力, コリオリ力, 遠心力の釣り合いによ る傾度風成分と台風の進行速度を考慮した成分をベクトル 合成して求める手法⁵⁾を用いた.

$$P(r) = P_0 + \Delta Pexp(-\frac{r_0}{r}) \tag{8}$$

ここで, P₀は中心気圧, ΔPは中心の気圧深度, r₀は最大風 速半径, rは中心からの距離である.本研究では中心気圧, 最大風速半径及び経路を気象庁が提供するベストトラック データから図1に示すような日本海, 太平洋各海域を通過す る台風を重複しないよう選別しそれぞれの経路での平均を 求めることにより与えた.

2.3. 計算条件

太平洋ケースでの計算は太平洋全域の影響を考慮するた め図2に示す第1領域から第2領域へネスティングを行い,日

本海ケースでの計算はネスティングを行わず第2領域のみ で行った. 各領域での条件を表1に示す. ここで, 鉛直グ リッド幅は海面に近いほど細かくしており躍層深付近では 第1領域で6.5 m, 第2領域で3.3 mとしている. また, 初期 条件及び境界条件として与える海流流速, 水温, 塩分, 海面 水温(SST)と海面塩分(SSS)は太平洋ケースでECMWFが提 供する海洋再解析データORAS4⁶⁾(水平解像度1°, 1ヶ月平 均)の7月分, 日本海ケースでJAMSTECが提供するFRA-JCOPE2⁷⁾(水平解像度1/12°, 時間間隔24時間)の台風が通 過しなかった期間を選定し与えた. 計算期間は両ケース共 に2週間としている.

3. 計算結果

3.1. 躍層水深

図3に両ケースにおける密度勾配が最大となる躍層水深の時間平均を示す. 第2領域内ではおよそ水深10m-30mの 位置に躍層水深が存在していることが確認できる.

3.2. 内部波

図4はイベント期間中の水深15mでの東方流速,鉛直流 速のスナップショットを示す.63hrでは東方流速において 台風東側で吹送流による流速の増大が確認でき,鉛直流速 においては台風中心で吸い上げ効果による正の流速が生じ 後方では解放による負の流速が生じている.93hrでは東方 流速,鉛直流速ともに経路に沿った振動が確認でき,この 振動が内部波として伝播していると考えられる.

4. 振動モード解析

4.1. Dynamic Mode Decomposition

Schmid⁸⁾は流れ場の時系列データを振動モードに分解す る手法としてDynamic Mode Decomposition(DMD, 動的 モード分解)を提案した. 解析対象となるのは次のような 流れ場のデータセットである.

$$\boldsymbol{V}_1^{N-1} = [\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_{N-1}] \tag{9}$$

ここで、 v_i はi番目のタイムステップにおける流れ場のデー

図-3 計算期間中の平均躍層水深 (a)太平洋ケース, (b) 日本海ケース.

図-4 太平洋ケースにおける計算期間中の東方流速uと鉛 直流速wのスナップショット.コンターラインは海面 気圧,白丸は台風の中心を示す. (a)68hr, (b)93hr.

タセット、 V_1^{N-1} は1からN-1タイムステップの流れ場の 時系列データセットを表す. v_i が v_{i-1} の線形写像Aで表さ れると仮定する.

$$\boldsymbol{v}_i = \boldsymbol{A} \boldsymbol{v}_{i-1} \tag{10}$$

即ち, V_2^N は次式のように表される.

$$\boldsymbol{V}_2^N = \boldsymbol{A} \boldsymbol{V}_1^{N-1} \tag{11}$$

この線形写像Aの固有ベクトルと固有値を誤差が最小とな るように計算し、ダイナミックモードとその減衰、増幅率を 求める. DMDの手法としていくつかの方法が提案されて いるが、本研究では特異値分解により近似的にAの固有ベ クトルと固有値を求める手法(Higham et al⁹)を用いた.

4.2. 解析結果

海洋内部での振動を調べるため,第1領域では水深202m, 第2領域では水深85mまでの三次元の流れ場をデータセッ トとしてDMD解析を行った.計算領域内に台風の中心が 入ってから168hrを解析対象とし,入力時間間隔は60minと した.図5は太平洋ケースにおける北緯39度での約19hr周 期(北緯39度での慣性周期)のダイナミックモードを示して おり,東方流速においては吹送流の影響により表層にダイ ナミックモードの変動が生じている.また,密度について

図-5 太平洋ケースにおける北緯39度の断面でのダイナミックモード. (a)東方流速, (b)密度.

図-6 太平洋ケースにおける水深15mでのダイナミックモードの平面分布. (a)東方流速, (b)鉛直流速, (c)密度.

図-7 日本海ケースにおける北緯39度の断面でのダイナミ ックモード.(a)東方流速,(b)密度.

は水深およそ30m(躍層水深)でダイナミックモードの変化 が生じており,これは密度界面の振動による内部混合を反 映していると考えられる.図6は水深15mでの東方流速,鉛 直流速,密度における19hr周期のダイナミックモードを示 している.東方流速と鉛直流速においてはそれぞれ吹送流, 吸い上げ効果を反映したダイナミックモードの振動が見ら れる.密度に関しては東方流速,鉛直流速とは異なるスケー ルの振動が確認でき,これは断面に見られるような内部混 合による影響を反映していると考えられる.また,密度の 水平分布には太平洋ケースにも関わらず日本海にもダイナ ミックモードの変動が確認でき,このことから閉鎖海域で ある日本海においては直接日本海で発生する低気圧以外の 気象擾乱によっても振動が生じる可能性がある.

図7は日本海ケースでの北緯39度の断面における19hr周 期のダイナミックモードを示す.太平洋ケースと同様に東 方流速では吹送流の影響と考えられる水深約60mまでのダ イナミックモード増大が確認され,密度については内部混 合の影響と考えられる水深20mでの変動が見られた.ま た,図8は同モードでの水深15mにおける水平分布を示し ており,太平洋ケースと同様の理由から水平流速において 経路に沿った振動が生じ,密度においては水平流速とは異 なった振動が生じていると考えられる.

これらの解析結果はDMDにより黒潮などのつよい流れ の振動成分を取り除くことにより初めて抽出できるもので ある.また,日本海は閉鎖的な海域であるため振動が反射 し,太平洋と振動の減衰率に違いが生じる可能性があり,今 後検討していく必要がある.

5. 結論

本研究ではモデル台風を作成し強風イベント時に伴う日 本海,太平洋での内部波振動モードをDMDにより調査した. 太平洋ケースと日本海ケース共に東方流速,鉛直流速のダ イナミックモードは鉛直方向に減少するように分布し吹送 流または低気圧による吸い上げ効果の影響が確認された. 水平分布については台風の風速によるものと考えられる振 動が台風経路に沿って見られた. 密度に関しては表層とさ らに深い層でのダイナミックモードの違いが確認された.こ れは台風通過に伴う内部混合により表層とさらに深い層で のミキシングが生じ,その影響がダイナミックモードに表 れていると考えられる.また,太平洋ケースにおいても日本 海での密度のダイナミックモードの増大がみられ,閉鎖海 域である日本海では直接上空以外で生じる気象擾乱によっ ても内部混合が促進されることが考えられる.

図-8 太平洋ケースにおける水深15mでのダイナミック モードの平面分布.(a)東方流速,(b)密度.

参考文献

- 本間翔希,猿渡亜由未,宮武誠,津軽海峡における三次元 密度構造の特徴化. 土木学会論文集B2(海岸工学), Vol. 73, No. 2, pp. I_67-I_72, 2017.
- Myers, V.A. and Malkin, W.(1961):Some properties of hurricane wind fields as deduced from trajectories, U.S. Weather Bureau, National Hurricane Reserch Project, Report 49.
- 3) Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophysical Res. 102(C3), pp 5753-5766, doi:10.1029/96JC02775
- 4) Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophysical Res. 102(C3), pp 5733-5752, doi:10.1029/96JC02776
- 5) 河合弘泰・川口浩二・大釜達夫・友田伸明・萩元幸将・ 中野俊夫(2007):経験的台風モデルと局地気象モデル の風を用いた瀬戸内海の高潮推算精度,海岸工学論文 集,第54巻, pp.286-290
- 6) Balmaseda MA, Trenberth KE, Klln E (2013b) Distinctive climate signals in reanalysis of global ocean heat content. Geophy Res Lett 40(9):17541759
- 7) Miyazawa, Y., R. Zhang, X. Guo, H. Tamura, D. Ambe, J.-S. Lee, A. Okuno, H. Yoshinetou, and K. Komatsu, 2009: Water mass variability in the west-

ern North Pacific detected in a 15-year eddy resolving ocean reanalysis, J. Oceanogr. 65, 737-756.

- 8) Schmid, P. J.: Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., Vol.656, pp.5-28,2010
- 9) Higham, J., Brevis, W. and Keylock, C.: Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows, J. Hydraoulic Research, Vol.0,No.0,pp.1-10,2018