太平洋北西における爆弾低気圧に伴う高潮の要因別脆弱性評価

Assessment of storm-surge vulnerability by the explosive cyclogenesis in the Northwest Pacific region by various factors

北海道大学工学院 ○学生員 北海道大学大学院工学研究院 正会員 猿 北海道大学大学院工学研究院 正会員 瀕

福原 康平(Kohei Fukuhara) 猿渡亜由未(Ayumi Saruwatari) 渡部靖憲(Yasunori Watanabe)

1. はじめに

1時間に1hpa以上の急速な中心気圧の低下が24時間以上 継続して発達する温帯低気圧として定義される爆弾低気圧 による高潮,高波被害が近年しばしば報告されている.Chen et al. (1992) によると11月 3月にかけての冬季に,北海道西 部の日本海上,並びに東北 北海道の東部の太平洋上におい て,低気圧の発達速度が特に大きくなる傾向がある.海面か らのエネルギー供給が爆弾低気圧の発達速度を決めるファ クターの一つとなっており,大陸上に比べ島国である日本は 特にその影響を受けやすい地域となっている.猿渡ら(2015) は1979年以降の気象再解析データに基づき、概ね2000年以 降,北日本周辺を通過する冬季の温帯低気圧の中心気圧は 減少傾向且つ強い勢力を維持する期間は延長傾向にあり、ま たそれに伴い荒天時の高波の規模も増大傾向にあることを 示した.また日本周辺だけでなく世界各地で爆弾低気圧の発 生頻度の増加が指摘されている.2014年12月17日,最大-2.46 hPa/hr の発達率で中心気圧を低下させながら太平洋上を 北上した爆弾低気圧は北海道東部の根室湾および根室半島 沿岸地域に高潮被害をもたらした.このときの浸水深は平 均T.P. 2.2mであり,浸水面積は根室市街地と根室港湾区域 だけで約15ha (Saruwatari et al. 2015),また根室市による と床上床下浸水や漁具の流失等による市内の被害総額は20 億円にも上ったと報告されている.更に根室市では翌2015年 10月8日にもT.P. 1.5-1.7mの高潮浸水が発生した(釧路地方 気象台,2015).こちらのイベントは爆弾低気圧を気象外力と したものでは無かったものの、今後の北日本における冬季の 高潮リスクの増大が懸念されると共に、高潮リスクの評価 とそれに対する防災対策が今後求められる.

季節風による傾圧性,偏西風の形成,海面からの熱供給 は低気圧の発達において大きな役割を果たしている.この ことは日本海においてシベリア高気圧により形成される気 圧傾度及び太平洋を通過する温暖な流れである黒潮による 熱供給が低気圧形成に大きな影響を与えていることを意味 する.Yoshida and Asuma (2004)は以下のような3つの典 型的な低気圧の発達パターンを発見した.(1)日本海及び オホーツク海において急速には発達する日本海タイプ(2) ユーラシア大陸及び日本海で形成され,太平洋において急 速に発達する日本横断タイプ(3)太平洋で形成され,太 平洋で急速に発達する太平洋タイプ.この低気圧の分類方 法は沿岸部の高潮リスクを求める上で有用である.

本研究では爆弾低気圧を前述した主な3つのタイプに分類し,各地点における爆弾低気圧により発生する高潮の最 大水位と最大気圧低下率の関係について調査した.その後 吹き寄せ効果を決定する風向及び風速に焦点を当て高潮高 さとの関係性について明らかにした.

図-2 日本横断タイプの低気圧

図-3 太平洋タイプの低気圧

2. 計算方法

2.1. 三次元海洋循環モデル

三次元非静水圧近似流れモデルMIT General Circulation Model (MITgcm, Marshall,1997)により,爆弾低気圧通過時 の三次元流れ場の数値計算を行った.このモデルはブシネス ク近似における圧縮性流体のNavier-Stokes式を有限体積法 によって解くものである.外力としては重力,粘性力、底面 摩擦、コリオリ力,そして風応力と気圧による海面の吸い上 げ等が考慮される.MITgcmの基礎方程式は、次式の運動方 程式、連続式、トレーサーの輸送方程式から構成される.

$$\frac{D\vec{v}_h}{Dt} + (2\Omega \times \vec{v})_h + \nabla_h \phi = F_{\vec{v}h} \tag{1}$$

$$\frac{D\dot{r}}{Dt} + \hat{k} \cdot (2\Omega \times \vec{v}) + \frac{\partial\phi}{\partial r} + b = F_{\dot{r}}$$
(2)

$$\nabla_h \cdot \vec{v}_h + \frac{\partial r}{\partial r} = 0 \tag{3}$$

$$\frac{D\theta}{Dt} = Q_{\theta} \tag{4}$$

$$\frac{\partial B}{\partial t} = Q_S \tag{5}$$

ここに、 $\vec{v} = (u, v, \hat{r}) = (\vec{v}_h, \hat{r})$ は流速、 $\vec{\Omega}$ は地球の自転速 度、 Θ はポテンシャル温度、Sは海水の塩分濃度を示して いる、大気または海洋に対して鉛直座標に気圧Pや高さZを用いることで、鉛直流速は次式になる。

$$\dot{r} = \frac{\partial \dot{r}}{\partial r} = w \tag{6}$$

 ϕ はジオポテンシャル高さ・圧力であり、次式で表される.

$$\phi = \frac{p}{\rho_c} \tag{7}$$

本検討では,沿岸海域の浅海域に形成されうる急峻な地 形変化に対応した流れ場を正確に再現するため,非静力学 近似を適用して動圧も考慮した上で三次元的に流れ場を計 算している.非静学近似では圧力項が表面圧力,静水圧, 非静水圧成分に分離される.

$$\phi(x, y, r) = \phi_S(x, y) + \phi_{hyd}(x, y, r) + \phi_{nh}(x, y, r)$$
(8)

これより,運動方程式は次式のように表される.

$$\frac{\delta \vec{v_h}}{\delta t} + \nabla_h \phi_{hyd} + \epsilon_{nh} \nabla_h \phi_{nh} = \vec{G}_{\vec{v}h} \tag{9}$$

$$\frac{\delta\phi_{hyd}}{\delta r} = -b \tag{10}$$

$$\epsilon_{nh}\frac{\delta\dot{r}}{\delta t} + \frac{\delta\phi_{nh}}{\delta r} = G_{\dot{r}} \tag{11}$$

ϵは非静水圧成分を示す.

2.2. 計算条件及び計算領域

本研究では爆弾低気圧の発生する48時間前から助走計 算及び二段階のネスティング計算を行った.第一領域は太 平洋における海流の循環を再現するために太平洋全体を包 括する図6のような範囲を,また第二領域はユーラシア大

陸及び日本列島における水位上昇を確認するため7でのような範囲で計算を行った.なお第一領域では気象庁より再 解析データJRA-55,第二領域ではJMA-MSMを用いた.

	D1	D2
計算領域	$10^{\circ}N - 65^{\circ}N,$ $115^{\circ}E - 120^{\circ}W$	$30^{\circ}N - 47^{\circ}N,$ $127^{\circ}E - 150^{\circ}E$
水平解像度	$30' \times 30'$	$10' \times 10'$
鉛直解像度	2.0-698m	2.0-698m
グリッド数	251×111×100	139×103×100
タイムステップ	10sec	10sec
気象データ	JRA55	JMA-MSM

図-4 計算条件

case	計算開始時刻 (UTC)	最 <mark>低気圧</mark> [hPa]	最大気圧深度 [hPa/hr]
(1)-1	2014/11/30 00:00	974.3	1.62
(1)-2	2017/12/23 00:00	946.7	2.04
(1)-3	2004/11/26 00:00	950.5	2.56
(1)-4	2015/9/30 00:00	951.9	2.23
(1)-5	2014/10/30 00:00	957.7	1.35
(2)-1	2011/3/24 00:00	973.8	1.08
(2)-2	2010/12/27 12:00	975.6	1.04
(2)-3	2013/3/19 00:00	950.5	1.76
(2)-4	2005/2/9 00:00	957.0	2.06
(2)-5	2015/01/15 00:00	958.9	1.62
(2)-6	2017/2/4 00:00	959.4	1.51
(3)-1	2015/3/1 00:00	969.2	1.66
(3)-2	2015/2/26 00:00	977.9	1.53
(3)-3	2000/3/19 00:00	951.4	2.63
(3)-4	2006/2/1 00:00	962.4	2.48
(3)-5	2013/1/13 00:00	936.1	3.09
(3)-6	2011/3/13 00:00	941.6	2.08
(3)-7	2017/1/19 00:00	947.5	1.35
(3)-8	2010/1/11 00:00	948.8	1.95
(3)-9	2014/12/28 00:00	949.8	2.13
(3)-10	2008/3/29 00:00	955.2	2.36
(3)-11	2007/1/5 00:00	952.9	2.31
(3)-12	2012/12/29 00:00	960.2	1.73

図-5 計算を行った爆弾低気圧イベント

本研究では爆弾低気圧データベースに公開される1996年 から2018年に発生した爆弾低気圧の中から発達位置が定義 した低気圧タイプと一致し特に気圧が低かったイベントを それぞれ日本海タイプ119ケースから5ケース,日本横断タ イプ62ケースから6ケース,太平洋タイプ248ケースから12 ケース選定した.それらの計算開始時刻,最低気圧及び最 大気圧深度を図5に示す.なお,地形データはGEBCOを用いて作成した.

3. 計算結果

計算条件にあげた各イベントの計算を行いユーラシア大 陸及び日本列島沿岸部に位置する主要な湾地点における最 大水位, 吹き寄せ効果による最大水位, 最大風速及び最大 気圧深度を求めた.特に根室湾においてそれぞれの要素の 顕著な相関関係が見られたことから根室湾を中心に検討を 行っていく. 図8は根室湾における気圧低下率と最大水位の 関係性を示し、各タイプごとに色分けを行った. この結果 から低気圧タイプによらず最大気圧深度が大きくなるにつ れて最大水位が高くなるゆるやかな相関関係がみられる. このことは急激な気圧の低下によって海面が吸い上げられ 水位が上昇する吸い上げ効果が高潮の発生に寄与している 一方でそれほど支配的ではないことを示している. 図9は 根室湾における最大風速と吹き寄せ効果のみによる水位上 昇量の関係を示す.この結果から風速が大きくにつれて吹 き寄せ効果により水位上昇が大きくなることがわかる.し かし、最大風速が18m/s程度まではゆるやかな上昇傾向を 示している一方で最大風速24m/s付近において極大な水位 上昇が観測できた.

吹き寄せ効果を詳細に検討するため根室湾における風向, 風速,吹き寄せ効果による水位上昇量の関係について調べ る.図10では根室において最大風速に到達した際の風向き を角度として表している.東方向に向かう風を0度とし,反 時計回りに増大していく.つまり90度ならば北向き,180 度なら西向き,270度なら南向きになる.対象としている 根室湾は東向きに開けた湾であることから風が西向きなら ば湾に垂直となり、吹送距離が最も長くなる.図10におい て50度から150度まではゆるやかな単調増加を示す.この ことは水位上昇量は風向に依存しており、湾に対して垂直 に近づくほど値が大きくなることを示している.次に湾に 対しておおよそ垂直な角度をとる150度から200度の範囲 においては風速が大きくなるにつれて水位が上昇する傾向 にあることから水位上昇量は風速と風向の両方に強く依存 していることが明らかになった.

図-9 根室湾における最大風速と吹き寄せ効果による最大 水位の関係

図-10 根室湾における風向と吹き寄せ効果による最大水 位の関係

4. 結論

本研究では三次元非静水圧モデルを用いて爆弾低気圧の 再現計算を行い,爆弾低気圧に伴う極大な高潮の生成要因 についての調査を行った.根室湾において気圧低下率及び 風速と水位上昇との相関関係が見られたことから,吸い上 げ効果と吹き寄せ効果のどちらもが高潮生成に寄与してい ることが確認できた.

その後吹き寄せ効果に焦点を当て,調査を行ったところ 水位上昇量が風向及び風速に依存していることが明らかに なった.今後さらに高潮発生要因を正確に把握するためさ らなる研究が求められる.

参考文献

- Chen, Shou-Jun, Ying-Hwa Kuo, Pai-Zhong Zhang, and Qi-Feng Bai. 1992. "Climatology of Explosive Cyclones of the East Asian Coast." Monthly Weather Review 120 (12): 3029-3035
- Gyakum, John R., and Richard E. Danielson. 2000. "Analysis of Meteorological Precursors to Ordinary and Explosive Cyclogenesis in the Western North Pacific." Monthly Weather Review 128 (3): 851-863.
- Iwao, Koki, Masaru Inatsu, and Masahide Kimoto.
 2012. "Recent changes in explosively developing extratropical cyclones over the winter Northwestern Pacific." J. Climate 25: 7282-7296.
- Kawamura, Ryuichi. 2011. "Northwestern Pacific Megastorm Database." Accessed 2018-05-01. http://fujin.geo.kyushu-u.ac.jp/.
- 5) Kawano, Tetsuya, and Ryuichi Kawamura. 2018. "Influence of Okhotsk Sea Ice Distribution on a Snowstorm Associated with an Explosive Cyclone in Hokkaido, Japan." SOLA 14: 1-5
- Kitano, Yoshikazu, and Tomohito J. Yamada, 2016.
 "The comparison between Explosive Cyclone and Typhoon over Northern Japan in the Current and Future Climate." Procedia Engineering 154: 726-732
- 7) Kocin, Paul J., Philip N. Schumacher, Ronald F. Morales, and Louis W. Uccellini. 1995. "Overview of the 1214 March 1993 Superstorm." Bulletin of the American Meteorological Society 76 (2): 165-182.
- Kuwano-Yoshida, Akira, and Yoshio Asuma. 2008.
 "Numerical Study of Explosively Developing Extratropical Cyclones in the Northwestern Pacific Region." Monthly Weather Review 136 (2): 712-740
- Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997a. "A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers." J. Geophys. Res. Oceans 102, C3: 5753-5766.
- Marshall, J., C. Hill, L. Perelman, and A. Adcroft. 1997b. "Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling." J. Geophys. Res. Oceans 102, C3: 5733-5752

- 11) Qumeraci, H., A. Kortenhaus, A. Burzel, M. Naulin, D. R. Dassanayake, J. Jensen, T. Wahl, et al.2015. "XtremRisK Integrated Flood Risk Analysis for Extreme Storm Surges at Open Coasts and in Estuaries: Methodology, Key Results and Lessons Learned." Coastal Engineering Journal 57 (1): 1540001-1-1540001-23.
- Sanders, Frederick. 1986. "Explosive Cyclogenesis in the West-Central North Atlantic Ocean, 198184. Part I: Composite Structure and Mean Behavior." Monthly Weather Review 114 (10): 1781-1794.
- Saruwatari, Ayumi, Adriano Coutinho de Lima, Masaya Kato, Osamu Nikawa, and Yasunori Watanab.
 2015. "Report on the 2014 Winter Cyclone Storm in Nemuro, Japan." Coastal Engineering Journal 57 (3): 1550014-1-1550014-14.
- 14) Yoshida, Akira, and Yoshio Asuma. 2004. "Structures and Environment of Explosively Developing Extratropical Cyclones in the Northwestern Pacific Region." Monthly Weather Review 132 (5): 1121-1142.