目付 415g/m² AFRP シート下面接着曲げ補強 RC 梁の 繰り返し衝撃荷重載荷時の衝撃応答解析

Numerical analysis for RC beams strengthened with externally bonded AFRP sheet with 415 g/m² mass under consecutive impact loading

室蘭工業大学大学院	○ 学生員	瓦井	智貴 (Tomoki Kawarai)
室蘭工業大学大学院	正 員	小室	雅人 (Masato Komuro)
室蘭工業大学大学院	フェロー	岸	徳光 (Norimitsu Kishi)
室蘭工業大学		田口	将大 (Shota Taguchi)

1. はじめに

著者らはこれまで耐衝撃性向上方法の1つとして耐食性 に優れ軽量である FRP 材に着目し、シート下面接着工法 についてその耐衝撃性向上効果を明らかにしてきた.し かしながら、これらの検討はいずれも単一重錘落下衝撃 実験を対象としたものであり、合理的な補強設計法の確 立のためには、繰り返し衝撃荷重載荷時における劣化進 展状況を把握し、シートが剥離あるいは破壊に至るメカ ニズムを解明することが肝要である.一方で、実験的研 究のみでは費用の面で限界があることより、数値解析的 研究も併用して推進することが重要である.

このような観点より、本研究ではアラミド繊維(AFRP) シート下面接着曲げ補強 RC 梁(以後、単にシート補強 RC 梁)の繰り返し衝撃荷重載荷時における耐衝撃挙動およ びひび割れ分布の再現を目的とし、別途実施した重錘落 下衝撃実験結果を対象に、三次元弾塑性衝撃応答解析を 実施した.ここでは、ひび割れ分布を再現するためにコ ンクリート要素の梁軸方向要素長を6mm 程度まで小さ くし、かつ既往の研究で提案されている引張破壊エネル ギー(G_f)等価の概念を適用した場合について数値解析を 実施し、実験結果と比較する形で同概念の適用性を検討 した.なお、本数値解析には陽解法に基づく汎用構造解 析用コード LS-DYNA を用いている.

2. 実験概要

2.1 試験体概要

図-1には、本研究で対象としたシート補強 RC 梁の形 状寸法と配筋および補強状況を示している. 試験体の形 状寸法(梁幅×梁高×スパン長)は、200×250×3,000 mm である.また、軸方向鉄筋は上下端に D19 を各2本配置

図-1 試験体の形状寸法と配筋

し、梁端面に設置した厚さ9mmの定着鋼板に溶接固定している。せん断補強筋にはD10を用い、100mm間隔で配筋している。また、目付415g/m²のAFRPシートは、RC梁下面の補強範囲にブラスト処理を施し、エポキシ系プライマーを塗布して指触乾燥状態であることを確認の後、エポキシ系含浸接着樹脂を用いて接着している。なお、養生期間は気温が20°C程度の環境で7日間以上とした。

表-1には本実験に用いた鉄筋の材料特性値を,**表**-2には AFRP シートの力学的特性値(公称値)を示している.

2.2 実験方法および測定項目

重錘落下衝撃荷重載荷実験は,質量 300 kg,先端直径 200 mm の鋼製重錘を設定高さから終局に至るまでスパン 中央部に自由落下させる繰り返し載荷法に基づいて実施 した.試験体の両支点部は,**写真-1**に示すように回転を 許容し,試験体設置後に鋼製矩形梁状治具を載せボルト を介して締めることで浮き上がりを防止する構造となっ ている.

表-3には、本研究で対象とした試験体の一覧を示し

表-1 鉄筋の材料特性値

呼び径	降伏 強度 f _y (MPa)	破断 強度 <i>f_u</i> (MPa)	弾性 係数 <i>Es</i> (GPa)	ポア ソン比 <i>vs</i>
D10	401.9	575.1	201	0.0
D19	371.0	542.5	206	0.3

表-2 AFRP シートの力学的物性値(公称値)

	目付量	保証 耐力	設計厚	引張 強度	弾性 係数	破断 ひずみ
	(g/m^2)	(kN/m)	(mm)	$f_{au}(\text{GPa})$	E_a (GPa)	$\epsilon_{au}~(\%)$
ſ	415	588	0.286	2.06	118	1.75

写真-1 実験装置と試験体の設置状況

表-3 試験体一覧

試験 体名	設定 落下高さ <i>H</i> (m)	実測 落下高さ <i>H</i> ′ (m)	コンクリートの 圧縮強度 f'_c (MPa)
AS-H1.0-1.0	1.0	1.01	22.7
AS-H1.0-2.0	2.0	1.91	55.7

図ー2 有限要素モデル

 σ (MPa)

1_{au}

ている.本研究では、シート補強 RC 梁を対象に落下高さ H = 1 mから重錘を落下させ、破壊性状などを確認した 後、H = 2 mから繰り返し衝撃荷重を作用させることと した.表中の試験体名のうち、第1項目はAFRPシート補 強を示し、第2項目のHに付随する数値は処女載荷時の 落下高さ(m)を示しており、第3項目は設定重錘落下高 さ(m)を示している.なお、表中の実測重錘落下高さH'(m)は実測衝突速度から換算した自由落下高さであり、コ ンクリートの圧縮強度 f'_c は別途実施した材料試験から得 られた値である.

本実験の測定項目は、(1) 重錘に内蔵されたロードセル による重錘衝撃力、(2) 支点治具に設置されたロードセ ルによる支点反力の合計値(以後、単に支点反力)、(3) レーザ式非接触型変位計によるスパン中央点変位(以後、 載荷点変位)、および(4) AFRPシートに貼付したひずみ ゲージによる軸方向ひずみ分布である.また、実験終了 後には RC 梁の側面についてひび割れ分布を記録した.

3. 数值解析概要

3.1 有限要素モデル

図-2には、本研究で用いたシート補強 RC 梁に関する 数値解析モデルを示している.解析モデルは、対称性を 考慮してスパン方向および桁幅方向にそれぞれ2等分の 1/4 モデルを採用した.適用した要素タイプは、せん断補 強筋には2節点梁要素、それ以外には全て8節点固体要 素を用いている.なお、軸方向鉄筋は公称断面積と等価 な正方形断面に簡略化している.要素の積分点数に関し ては、8節点固体要素に対して1点積分、2節点梁要素に 対して4点積分とした.

目付 415 g/m² の AFRP シートに関しては, 表-2 に示 すように設計厚が 0.286 mm と非常に薄く, これを直接 8 節点固体要素を用いてモデル化する場合には, 計算時間 が過大になる. このため, 本研究では厚さを仮想的に 10 倍にすることとし、その軸剛性が等価となるように、弾 性係数を 1/10 とした.また、高さ方向の分割は1分割と している.

(c) AFRP シート

^еаи

コンクリートー重錘間およびコンクリートー支点治具 間には、面と面との接触・剥離を伴う滑りを考慮した接触 面を定義した.また、接触反力の算定にはペナルティ法 を適用している.ただし、摩擦は考慮していない.コン クリートと軸方向鉄筋およびせん断補強筋要素間は滑り 等を考慮せずに完全付着と仮定した.また、コンクリー トと AFRP シート要素間についても同様に完全付着を仮 定した.

衝撃荷重は重錘要素をRC梁に接触する形で配置し、その全節点に表-3に示す実測重錘落下高さH'に相当する 衝突速度を付加することで発生させている。また、減衰 定数hは質量比例分のみを考慮するものとし、予備解析 に基づいて鉛直方向最低次固有振動数に対して 0.5% と設 定した。

3.2 材料構成則

図-3には、本数値解析で用いたコンクリート、鉄筋お よび AFRP シートの応力-ひずみ関係を示している.以 下に、各材料物性モデルの概要を述べる.

図-3(a)には、コンクリートの応力一ひずみ関係を示している。 圧縮側は相当ひずみが 0.15% に達した段階で 完全降伏するバイリニア型としている。降伏の判定には Drucker-Pragerの降伏条件式を採用し、圧縮強度 f'_c に関し ては別途実施した材料試験から得られた **表**-3に示す値 を入力している。

一方,引張側に対しては線形の相当応力-相当ひずみ 関係を仮定し,破壊圧力に到達した段階で引張力を伝達 しないモデル(カットオフモデル)を採用した.また,RC 梁の場合には梁全体に多数のひび割れが生じることより, その補強効果を適切に評価するためにはひび割れを精度 よく評価することが必要になる.本研究では,予備解析

の基に任意のコンクリート要素の梁軸方向要素長 y_i を 6 mm 程度まで小さくし,既往の研究を参考に G_f 等価の概 念を考慮した仮想的な換算引張強度 f_t を用いることとした.なお,換算引張強度 f_t は次式で与えられ,本解析で は基準要素長 y_0 を 25 mm と設定した.

$$f_{ti} = f_{t0} \cdot \sqrt{\frac{y_0}{y_i}} \tag{1}$$

ここで、 f_{ti} :換算引張強度、 f_{t0} :材料試験から得られる コンクリートの圧縮強度に基づいた引張強度 (= $f'_c/10$) で ある.なお、単位体積質量 ρ_c およびポアソン比 v_c は、そ れぞれ $\rho_c = 2.35 \times 10^3$ kg/m³、 $v_c = 0.167$ を用いることと した。

図-3(b)には、軸方向鉄筋およびせん断補強筋に関す る応力--ひずみ関係を示している。本モデルは降伏後の塑 性硬化を考慮したバイリニア型の構成則モデルである。降 伏応力 f_y は**表**-1に示す値を用い、単位体積質量 ρ_s 、弾 性係数 E_s およびポアソン比 v_s に関しては公称値を用い、 それぞれ $\rho_s = 7.85 \times 10^3$ kg/m³、 $E_s = 206$ GPa、 $v_s = 0.3$ と した。また、降伏の判定は、von Mises の降伏条件に従う こととし、塑性硬化係数 H'は弾性係数 E_s の1% と仮定 している。

AFRP シートは、**図**-3(c)に示すように弾性体と仮定した.また、エロージョンを設定し破断ひずみ ϵ_{au} に到達した時点で要素が削除されるものとした.単位体積質量 ρ_a はシート厚さを 10 倍にしてモデル化していることより、公称値である $\rho_a = 1.204 \times 10^3 \text{ kg/m}^3$ の 1/10 とし、弾性係数 E_a もシート要素の軸剛性が等価になるように 表-2 に示す値の 1/10 とした.なお、破断ひずみ ϵ_{au} は表-2 に示す値を用いている.

支点治具,定着鋼板および重錘の全要素に関しては,実 験時に塑性変形が確認されていないことより,弾性体モデ ルを適用している.弾性係数 E_s およびポアソン比 v_s には 公称値を用いることとし,それぞれ $E_s = 206$ GPa, $v_s = 0.3$ と仮定している.単位体積質量 ρ_s については,支点治具 および定着鋼板は共に公称値である $\rho_s = 7.85 \times 10^3$ kg/m³ を用いているが,重錘に関しては重錘質量 300 kg を解析 モデルの体積で除した値を入力している.

4. 数値解析結果及び考察

4.1 各種時刻歴応答波形

図-4は、本研究で対象とした2ケースに関して、重錘 衝撃力・支点反力・載荷点変位の時刻歴応答波形を実験結 果と解析結果を比較する形で示したものであり、黒線が 実験結果、赤線が解析結果を表している.なお、横軸は 重錘がコンクリートに衝突した時刻を原点としている.

まず,図-4(a)に示す重錘衝撃力波形に着目すると, 実験結果では,いずれのケースも振幅が大きく継続時間 が1ms程度の第1波に,振幅が小さい第2波目が後続す る性状を示していることが分かる.一方,数値解析結果 は処女載荷時には最大衝撃力や第2波目以降の波形性状 を非常によく再現しているものの,繰り返し載荷時には 最大衝撃力を若干過小評価しており,第2波の継続時間 が1ms程度大きく示されている.

次に、図-4(b)に示す支点反力波形に着目すると、実 験結果は、継続時間が30~45 ms 程度の主波動に高周波 成分が合成された分布性状を示している.また、繰り返 し載荷時には、主波動の継続時間が長くなっていること から処女載荷時よりも剛性が低下していることが推察さ れる.数値解析結果に着目すると、いずれのケースも実 験結果よりも最大支点反力が大きく示されているものの、 実験結果と同様に、繰り返し載荷時にはその継続時間が 長くなっていることが確認できる.

最後に、図-4(c)に示す載荷点変位波形に着目すると、 繰り返し載荷時には若干最大変位を過小評価しているも のの、自由減衰振動状態や残留変位をほぼ適切に再現し ていることが分かる.また、後述のように繰り返し載荷 の場合には、実験時に FRP シートが破断し終局に至って いるが、解析結果においてもシート要素が削除されてお りシートの破断を確認している.

4.2 各時刻におけるひずみ分布およ損傷性状比較

図-5には、繰り返し載荷時における AFRP シートの軸 方向ひずみ分布について、解析結果と実験結果を時系列

平成30年度 土木学会北海道支部 論文報告集 第75号

(a) ひずみ分布

(b) ひび割れ状況

的 ($t = 1 \sim 17 \text{ ms}$) に比較して示している.また,併せて 実験結果と解析結果のひび割れ性状も示している.

まず,ひずみ分布の実験結果に着目すると,t=10 ms までは引張ひずみが中心部から支点方向に伝播して行く 様子が確認できる.その後,t=15 ms 時点では,梁が下 方に変形した状態であるにも拘わらず,載荷点近傍部で 圧縮ひずみの状態を呈している.この時点では,スパン 中央部で FRP シートが剥離の状態を示していることから, FRP シートが中央部で破断の傾向を示し上ぞりの状態を 呈したものと推察される.

一方で数値解析結果からは, t = 15 ms まで引張ひずみ が支点部まで広がっていき, t = 17 ms においてシート全 面において零ひずみの状況を呈している.また, t = 17 ms 時点では,載荷点直下のシート要素が破断ひずみに到達 して削除されている状況が示されており,シート破断に 至っていることが確認できる.

以上より,解析結果は、シート破断に至る時刻が1~2

ms 程度異なるものの,繰り返し載荷時の FRP シートのひ ずみ分布性状やシート破断の傾向等実験結果をほぼ適切 に再現しているものと判断される.

5. **まとめ**

- 解析結果より、コンクリート要素にG_f等価の概念を 適用することで、繰り返し衝撃荷重載荷時の梁の載 荷点変位波形をほぼ適切に再現可能である。
- また、実験結果のFRPシートのひずみ分布性状や破 断時刻に関しても概ね適切に評価可能であることが 明らかになった。

謝辞

本研究は JSPS 科研費 JP17K06527 の助成により行われ たものである.また,研究で使用した AFRP シートはファ イベックス(株),接着剤は住友ゴム工業(株)からご提供 頂いた.ここに記して,感謝する次第である.