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1. Introduction 

 
Neural networks are widely used in solving tough problems 

which are difficult to establish mappings directly from data to 
result by applying domain knowledge, since neural networks 
are purely data-driven methodology, with no requirement of 
domain knowledge. Thus, in civil engineering field, neural 
networks show potential to deal with the vibration-based 
structural damage detection (SDD) issue with no high-cost 
knowledge of dynamics. 

It has already been validated that by applying convolutional 
neural networks (CNNs), which have been well trained through 
supervised learning algorithms by feeding one-to-one matched 
structural vibration data and labels with damage information 
into the CNNs and updating the inner parameters in sufficient 
iterations, structural damages such as stiffness and mass drop 
in a beam structure (Lin et al. 2017), loosen bolt of steel frame 
(Abdeljaber et al. 2017; Abdeljaber et al. 2018), and so on, can 
be identified with very high accuracies. The achievements 
show feasibility of the CNN-based SDD method. However, 
there is also obvious limitation of the supervised learning 
methods that only limited number of damaged patterns (limited 
locations and scales) of training data can be prepared. 
Considering time and labor costs, it is impossible to establish a 
database which contain all kinds of damaged pattern of a 
structure. Therefore, the result of predicting structural state by 
feeding a vibration data sample which is in an untrained 
category into a well-trained CNN is unknown. The robustness 
of the CNN-based SDD method need to be investigated. 

In this paper, robustness tests of a CNN-based SDD method 
were conducted and discussed based on two databases of free 
damped vibration data which are acquired from a T-shape steel 
beam.  
 
 
 

 

2. Vibration Experiments  
 

The vibration experiments were conducted on a steel T-
shape beam, as shown in Fig. 1. The steel beam is 2090 mm 
long, with 360 mm width flange. The thicknesses of the web 
and flange are 10 mm and 20 mm respectively. The height of 
the web is 390 mm. The beam is fixed by 8 bolts on both left 
and right ends (4 bolts on each side). Local structural damages 
were simulated by attaching a magnet in different locations to 
change local structural states slightly. 

In total two vibration experiments were conducted on the 
beam to establish 2 databases. The 1st experiment is designed 
for validating the performance of the classification CNN model 
to identify different trained structural states, and the 2nd 
experiment is used for test the robustness of the CNN model 
when predicting data in untrained categories. The 1st and 2nd 
experiments contain 16670 and 2151 vibration tests 
respectively. The layout of the experiments is shown in Fig. 2. 
In total 9 accelerometers are installed on the surface of the 
flange to measure the vertical vibration, with 10000 Hz 
sampling frequency. The sampling period is set to 1.0 second. 
Thus, the shape of each datum is 9 Ch. × 10000. A magnet, 
weight of 1.37 kg, is attached on the web in different positions 
to change the local structural mass slightly. Comparing to the 
weight of the beam (182.11 kg), the local mass change is only 
0.75% (1.37/182.11). 

 
Fig.1. T-shape steel beam 

 

Fig. 2. Layout of the vibration experiments 
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In the 1st experiment, the magnet was attached in 8 different 
positions to create 9 structural states (S0: original state with no 
magnet attached, and S1 - S8: states with the magnet attached 
on the web between two adjacent accelerometers). In every 
structural state, more than 1800 vibration tests were conducted 
to generate the acceleration data. The detailed data distribution 
is show in Table 1. In the 2nd experiment, the locations of the 
magnet in each structural state were horizontally shifted to the 
locations under the accelerometers, and the corresponding 
structural states are named as S1’ - S9’. The detailed data 
distribution is shown in Table 2. There are about 240 data in 
each structural state. In total, 2151 tests were conducted in the 
2nd experiment. 

Hammer hitting impulse load is chosen as the excitation 
method in the experiments. After impacting the beam, free 
damped vibration of the beam was measured. There are 8 
different excitation positions between every two adjacent 
accelerometers, as shown in Fig. 2. Data in every structural 
state contains the data excited in all 8 positions from E1 to E8. 
The inputs are in a range between 100 Gal to 1200 Gal to keep 
the variety of the database.  
 
3. CNN Models, Trainings, and Validations 
 

To validate that CNN is able to classify different structural 
states by feeding raw vibration data into the CNN, a simple 
classification CNN was designed as Table 3, with only one 1-
D convolutional layer and one 1-D max pooling layer. The 
labels of the data for the classification CNN model are in one-
hot key encoding, indicating different structural states. 
Categorical cross entropy and Adam are loss function and 
optimizer of the CNN respectively. As we know, classification 
neural networks are not able to predict data in untrained 
categories correctly. Thus, for the proposed classification CNN 

model for SDD in this paper, authors expect that the prediction 
of the data in untrained structural damage cases should be the 
closest trained structural damage categories. 

To obtain a CNN which can have a better expression of the 
damage locations than the classification CNN model, a 
regression CNN model was proposed that the labels of the data 
and output layer of the CNN were redesigned. The new label 
consists 2 units. The first unit is a value between 0 and 1 for the 
confidence of structural damage. The second unit is a value 
greater than 0 and less than 1 representing relative damaged 
location of the beam. The far left of the beam is 0 and the far 
right of the beam is 1. The updated output layer has only 2 units 
corresponding to the new labels, and excited by the sigmoid 
function. Meanwhile, the loss function of the new regression 
CNN is changed to mean square error. 

The trainings and validations of the proposed CNNs are 
conducted as following steps. Firstly, 80% of the Database 1 
are used for training the classification CNN model, and the 
other 20% of the Database 1 is applied to test the performance 
of the CNN when predicting data in trained categories. 
Secondly, the classification CNN model is trained with the 
Database 1, and tested with the Database 2 to investigate the 
capacity of the classification CNN model when predicting data 
in untrained categories. Finally, the regression CNN model is 
trained by the Database 1, and tested by the Database 2, 
validating the performance of the regression CNN model when 
predicting data in untrained categories. Above 3 steps are 
summarized in Table 4. 
 
4 Result 
 
  The results consist of 3 parts corresponding to the 3 steps 
introduced in Table 4. In the first step, 100% training accuracy 
and 99.8% test accuracy are obtained. There are 5 wrong 

      Table 1. Data distribution of Database 1 
Category  Amount  Category  Amount  
State 0 1894 State 5 1861 
State 1 1833 State 6 1858 
State 2 1849 State 7 1831 
State 3 1859 State 8 1825 
State 4 1860   
In total   16670 

 

      Table 2. Data distribution of Database 2 
Category  Amount  Category  Amount  
State 1’ 238 State 6’ 239 
State 2’ 239 State 7’ 239 
State 3’ 239 State 8’ 238 
State 4’ 239 State 9’ 240 
State 5’ 240   
In total   2151 

 
 
 

Table 3. Configuration of the classification CNN models  
Layer Number  Layers Output Shape Parameter Activation Variables 

1 Input Layer 10000×9 None None 0 

2 Convolution 1-D 9991×5 

Kernel number: 5; 
Kernel size: 10×9; 

Stride: 1; 
Padding: Valid 

Linear 455 

3 Batch normalization 9991×5 None None 20 

4 Max Pooling 1-D 3330×5 Kernel number: 3; 
Stride: 1 None 0 

5 Flatten 16650 None None 0 
6 Dropout 16650 Rate: 0.25 None 0 
7 Dense 40 None ReLU 666,040 

8 (Classification) Output: Dense 18  None Softmax 738 
 8’ (Regression) Output’: Dense 2 None Sigmoid 82 

 
Table 4. Experimental procedures 

Step Model Training Data Test data 
1 Classification 80% of Database 1 Other 20% of Database 1 
2 Classification Database 1 Database 2 
3 Regression Database 1 Database 2 
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predictions of the test data. The result shows that the 
classification CNN model is able to define a clear boundary 
between data in each trained category and have a very good 
performance to identify the data in those trained categories. 

In the second step, the classification CNN model was trained 
and tested with the Database 1 and Database 2 respectively. 
Thus, in the confusion matrix of the test result as shown in 
Table 5, only structural states of S1’ - S9’ are in the vertical axis, 
since only the data in the Database 2 is in the test set. 
Meanwhile, only structural states S0 - S8 are in the horizontal 
axis since the prediction of a classification CNN model can 
only in a trained category. Predictions were expected in the 
diagonal or the secondary diagonal in the confusion matrix 
(marked with underbars in Table 5) which could indicate an 
approximate location of damage. However, in Table 5, only 
data in S4’ are mainly predicted in expected positions. One 
third of the data in S3’ are predicted in S3, and the other two 
third are determined as S0 (intact). Predictions of data in S7’ 
have small error which are in S8, and predictions of S9’ data 
show small error which are mainly in S7. All other structural 
states (S1’, S2’, S5’, S6’, and S8’) shows very big error. In total, 
there are 478 accurate predications in the diagonal or the 
secondary diagonal in the confusion matrix. The overall 
accuracy of the prediction is only 22.2% (478/2151). Therefore, 
the classification CNN model is not feasible to predict 
vibration data in untrained structural state owning to the low 
accuracy. 

  In the third step, the regression CNN model was trained and 
tested with the Database 1 and Database 2 respectively. The 
training and test results are shown in Figs. 3-4. Fig. 3 shows 
that the regression CNN model has learned the features from 
the training data, since in Fig. 3 only values close to 0 or 1 are 
outputted in the Unit 1, and in the Unit 2 all the predicted 
damage locations are close to the actual locations. 

Fig. 4 shows the test result of the predictions of the 
regression CNN model. Generally, in the Unit 1, most data 
were correctly predicted as damaged cases. However, a large 
number of data in S8’ are wrong predicted in intact state as 
negative errors. The mean error of the Unit 1 of the predictions 
is 0.15, which is calculated as the Eq. 1. For the Unit 2 of the 
predictions of the test data: relative location of the structural 
damage, data in S3’, S4’, and S7’ show very good result that 
the predictions are mainly in the areas of the labels, indicating 
that for the test data in S3’, S4’, and S7’, the regression CNN 
model can predict the correct damage locations even though 
those cases are not trained. The error of the Unit 2 of the 
predictions of the test data in S6’ and S5’ are about 0.2 and 0.4 
which are obviously higher than test results of the data in S3’, 
S4’, and S7’. The big errors of the predictions are in S1’, S2’, 
S8’, and S9’ corresponding to the structural damages on the 2 
ends of the beam, as shown in Fig. 5. The mean error of the 
predictions of relative damage location is 0.31 which is also 
computed as the Eq. 1.  

E = mean (|Prediction – Label|)  (1) 

Table 5 Test result of Step 2 
 Prediction 

La
be

l 

  S0  S1 S2 S3 S4 S5 S6 S7 S8 Overall 
Accurate 

Prediction 
Accuracy 

S1' 5 1 0 49 1 5 0 177 0 238 1 0.4% 
S2' 0 13 35 2 90 0 91 0 8 239 48 20.1% 
S3' 143 0 0 74 2 0 0 18 2 239 74 31.0% 
S4' 0 9 0 0 227 1 0 1 1 239 227 95.0% 
S5' 164 1 0 70 1 2 0 0 2 240 3 1.3% 
S6' 34 2 0 88 19 45 51 0 0 239 96 40.2% 
S7' 11 0 1 2 0 0 0 28 197 239 28 11.7% 
S8' 237 0 0 0 0 0 0 1 0 238 1 0.4% 
S9' 30 1 0 8 0 0 0 201 0 240 0 0.0% 

Overall 624 27 36 293 340 53 142 426 210 2151 478 22.2% 
 

 

Fig. 3. Training result of Step 3 
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Comparing the predictions of the classification and 
regression CNN models, firstly, it is found that the 
classification model tends to predict more data as S0 (intact) 
state than the regression model; secondly, regression model has 
more correct predicted states than the classification model. 
Overall, the regression model shows higher robustness than the 
classification model when predicting data in untrained states. 
Moreover, on both models, an interesting phenomenon is 
presented that the data in S1’ tends to be predicted as S7 or S7’ 
on other side of the beam, which is unexplainable in current 
phase. 
 
5. Conclusion 
 

In this paper, the robustness of vibration-based SDD though 
CNN models are discussed. Based on 2 vibration experiments 
conducted on a steel T-shape beam, two databases are 
established. The performances of a classification CNN model 
and a regression CNN model to identify damage locations of 
data in untrained categories are discussed. 

Classification CNN model can hardly predict the 
approximate structural damage locations which are in 
untrained categories. In total there are only 478 correct 
predications with 22.2% accuracy, which shows that it is 
unfeasible to use classification CNN model to detect the 
approximate structural damage locations. 

The regression CNN model shows better performance than 
the classification CNN model, since the regression CNN model 
can predict the approximate damage locations when the 
structural damages are in the inner area of the beam. However, 
the structural damages in the two ends of the beam tend to be 
predicted with big error. Overall, regression CNN model has 
higher robustness than the classification CNN model when 
predict the data in untrained categories.  

Meanwhile, the phenomenon of that the predictions of data 
in S1’ tend to be S7 or S7’ on other side of the beam, may give 
hints of the special relation between vibration data and 
structural changes which cannot be ignored.  

In future works, to increase the robustness of the CNN-based 
SDD method, other architectures of the neural networks will be 
investigated from the views of both data science and dynamics. 
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Fig. 5. Errors of the Unit 2 of the test result of Step 3 

 
Fig. 4. Test result of Step 3 
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