機械学習によるコンクリート表面変状の自動検出モデルの改善

Improvement of automatic detection model of concrete surface deteriorations with Deep Learning

北海道大学工学部 北海道大学大学院工学研究院 ○学生員 岸下達哉(Tatsuya Kishishita) 正会員 松本京志(Takashi Matsumata

御退大学大学院上学研究院

正会員 松本高志(Takashi Matsumoto)

1. はじめに

現在の日本の社会インフラは経年劣化による老朽化が 大きな懸念材料となっている.さらには構造物の点検が 定期的に行われる一方で点検の専門的技術を持つ人材の 不足やコストの問題も表面化してきている.これらに対 して効率的な維持管理というものが求められている.

効率的な維持管理のためにはコンクリート構造物の画 像からひび割れなどの表面変状を自動検出する技術が考 えられる.前もって判別したい特徴パターンをコンピュ ーターに学習させておき,その特徴を含んだ画像が入力 されたとき,画像の特徴データと学習データを比較して 判別を行う.

学習には Deep Learning を用いる.Deep Learning は人間の脳の神経回路と似たようなシステムを持ち,膨大な データの蓄積から特徴パターンを自動検出する学習方法 である.本研究では特に画像認識の分野でよく用いられ る畳み込みニューラルネットワーク,通称 CNN (Convolutional Neural Network)を用いる¹⁾.

2. 目的

従来の分類器²⁾(表 1)はチョークや打ち継ぎ目など には高い精度を示すがひび割れやエフロの判別でやや精 度が下がる傾向にあった(表 2).そこで分類器のパラメ ータ設定に改善の余地があるのではないかと考え,本研 究では分類器の設定の変更により改善を試みて,その結 果の考察を行った.

3. 手法

すでに人の手で分類が行われている画像データを大量 に用意し,それらを表 1,3,4,5 の分類器でそれぞれ学習さ せる.学習データによる学習を行った後,学習データとは 別の異なるコンクリート画像を集めたテストデータを使 って各画像がどのクラスに属するかという確率の出力を 行う.学習データとは別にテストデータをそれぞれのク ラスに 200 枚ずつ用意し,分類精度の検証を行う.

4. 実験条件

4.1 学習データ

図 1,2,3,4,5 のようなクラス分けが既に行われているひ び割れ,エフロ,打ち継ぎ目,チョーク,通常表面+その他の 画像データをそれぞれ 5892 枚,2821 枚,4509 枚,2996 枚,5014 枚集めた.これらを 64*64pixel にリサイズする.リ サイズ後の画像を上下/左右反転,90 度回転させること でデータ数を 4 倍に拡張している.その後前処理として 画像の各画素から,画素の平均値を引きすべての画素の 平均値を0にしている.

図 1 ひび割れ

図2エフロ

図4チョーク文字

図5通常表面+その他

衣

層	パッチ	出力マップサイズ	関数	dropout
data		$128\!\times\!128\!\times\!1$		
conv1	3×3	$128\!\times\!128\!\times\!32$	ReLU	
conv2	3×3	$128\!\times\!128\!\times\!32$	ReLU	0.2
pool2	2×2	64×64×32		0.25
conv3	3×3	64×64×32	ReLU	0.25
conv4	3×3	32×32×64	ReLU	
pool4	2×2	64×64×64		0.3
conv5	3×3	32×32×64	ReLU	
conv6	3×3	32×32×64	ReLU	
conv7	3×3	32×32×64	ReLU	
conv8	3×3	32×32×64	ReLU	
pool8		$1 \times 1 \times 5440$		0.4
fc9		1×1×1024	ReLU	0.5
fc10		1×1×5	softmax	

表 2 従来の分類器による各クラス別の分類精度

				入力画像		
分類精度(%)	ひび割れ	エフロ	打ち継ぎ目	チョーク	通常表面	
	82.7	79.9	89.5	90.1	90.8	

4.2 分類器の設定

前述のとおり学習には畳み込みニューラルネットワークを使用するため,特徴抽出箇所には畳み込み層とプール層を交互に組み込み,そこから抽出した特徴量を全結合層に入力し最終的な分類を行う.実験は以下の4つの条件で行う.各パラメータはそれぞれ表1,表3,表4,表5に示した.

実験1:従来の設定と同じ分類器を用いる.

実験 2:dropout の数値を増やした分類器

- 実験 3:dropout の数値を実験 2 より増やした分類器
- 実験 4:dropout の数値は実験 2 と同じで分類器の階層 をさらに増やした分類器

5. 結果

各パラメータによるテストデータの"ひび割れ"画像の 分類精度の結果をまとめたグラフが図 7 である.Dropout の値を増やした実験 2 では全体でやや精度が上がり最大 比で 1.5 ポイントの改善が見られた.同様に dropout の数 値をさらに増やした実験 3 では分類精度が低下し全体で の精度,安定性が減少した.実験 4 では最高値が他 3 つよ りも抜け出ており,全体的な精度の底上げも見られ最大 比で 5.39 ポイント精度が向上した.また最も精度の良か った実験 4 の分類器による各クラスの分類精度は表 6 と なった.

6. 考察

dropout は一般的に全結合層に用いられるが特徴抽出 層にも適用することでニューラルネットワークの性能が 向上することが最近の研究で示されている³⁾.実験2では dropout の変更が効果的に表れ,実験3では逆に精度を下 げた.これは実験3では dropout の数値が大きくなり過ぎ たためネットワークの能力が制限されてしまい,十分な パフォーマンスが得られなかったためと考えられる.実 験4では実験2に追加する形で CNN 全体の層を増やし た.これにより過学習を抑えつつ,dropout による学習能力 の制限の回避を行った.

また各クラスについて,エフロは特徴の複雑性により 他クラスに比べて未だ低い精度になっている.チョーク クラスでは比較的高い分類精度の結果が得られた.これ はチョーク文字の場合,特徴が分かりやすいため特徴量 の抽出が行いやすかったためと思われる.打ち継ぎ目ク ラスについてもチョーク文字と同様で画像の特徴が単純 であるため,分類も精度の高いものが得られたと思われ る.通常表面は他の 4 クラスの特徴が抽出されない場合 自動的に分類されるので精度が上がりやすい傾向となっ ている.

7. 今後の課題

ひび割れの精度が大きく向上したのに対し,エフロは 大きな成果が無かった.これはエフロの特徴の複雑さと 学習データの少なさによるものと考えられる.今後の課 題としては学習データの拡張と改善した分類器を自動検 出器に実装し,天候や撮影距離など撮影環境に依らない 検出器の開発を目指したい.

表 3 実験2のパラメータ

層	パッチ	出力マップサイズ	関数	dropout
data		$128\!\times\!128\!\times\!1$		
conv1	3×3	128×128×32	ReLU	
conv2	3×3	128×128×32	ReLU	0.25
pool2	2×2	64×64×32		0.3
conv3	3×3	64×64×32	ReLU	0.3
conv4	3×3	32×32×64	ReLU	
pool4	2×2	$64 \times 64 \times 64$		0.3
conv5	3×3	32×32×64	ReLU	
conv6	3×3	32×32×64	ReLU	
conv7	3×3	32×32×64	ReLU	
conv8	3×3	32×32×64	ReLU	
pool8		$1 \times 1 \times 5440$		0.4
fc9		$1 \times 1 \times 1024$	ReLU	0.5
fc10		$1 \times 1 \times 5$	softmax	

表4 実験3のパラメータ

層	パッチ	出力マップサイズ	関数	dropout
data		$128\!\times\!128\!\times\!1$		
conv1	3×3	128×128×32	ReLU	
conv2	3×3	$128\!\times\!128\!\times\!32$	ReLU	0.2
pool2	2×2	64×64×32		0.25
conv3	3×3	64×64×32	ReLU	0.3
conv4	3×3	32×32×64	ReLU	
pool4	2×2	64×64×64		0.4
conv5	3×3	32×32×64	ReLU	
conv6	3×3	32×32×64	ReLU	
conv7	3×3	32×32×64	ReLU	
conv8	3×3	32×32×64	ReLU	
pool8		1×1×5440		0.55
fc9		1×1×1024	ReLU	0.6
fc10		1×1×5	softmax	

表 5 実験4のパラメータ

層	パッチ	出力マップサイズ	関数	dropout
data		$128\!\times\!128\!\times\!1$		
conv1	3×3	$128\!\times\!128\!\times\!32$	ReLU	
conv2	3×3	$128\!\times\!128\!\times\!32$	ReLU	0.25
pool2	2×2	$64\!\times\!64\!\times\!32$		0.3
conv3	3×3	$64 \times 64 \times 32$	ReLU	0.3
conv4	3×3	$32\!\times\!32\!\times\!64$	ReLU	
pool4	2×2	$64 \times 64 \times 64$		0.3
conv5	3×3	$32\!\times\!32\!\times\!64$	ReLU	
conv6	3×3	32×32×64	ReLU	
conv7	3×3	32×32×64	ReLU	
conv8	3×3	$32\!\times\!32\!\times\!64$	ReLU	
conv9	3×3	$32\!\times\!32\!\times\!64$	ReLU	
conv10	3×3	32×32×64	ReLU	
pool10		$1 \times 1 \times 5440$		0.4
fc11		$1 \times 1 \times 1024$	ReLU	0.5
fc12		$1 \times 1 \times 5$	softmax	

表 6 実験4における各クラスの分類

	入力画像				
分類精度(%)	ひび割れ	エフロ	打ち継ぎ目	チョーク	通常表面
	88.1	81.4	90.11	91.6	91.8

参考文献

1) 岡谷貴之: 深層学習 講談社 2015

 2)横山傑,松本高志:Deep Learning によるコンクリートの 変状自動検出器の開発と Web システムの実装

3)N.Srivastava,G.Hinton,A.Krizhevsky,I.Sutskever,R.Salakhu tdinov:Dropout:A Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research 15 (2014) 1929-1958,2014