らせん積層 CFRP 平板の点および面載荷時曲げ挙動

Flexural behaviors of helicoidally laminated CFRP plates under point and surface load

北海道大学大学院工学院	○学生員	石澤郁馬 (Ikuma Ishizawa)
北海道大学大学院工学研究院	正会員	松本高志 (Takashi Matsumoto)
北海道大学工学系技術センター技術部	正会員	近藤健太 (Kenta Kondo)

1. はじめに

近年,炭素繊維強化ポリマー(Carbon Fiber Reinforced Polymer,以下 CFRP)が注目されている. CFRP は炭素 繊維と熱硬化性樹脂との複合材料で,低密度であり,比 強度と比剛性,耐腐食性に優れる材料である.土木分野 でも活用が期待されているが,CFRP は破壊時の挙動が 脆性的である点に留意が必要である.

これまでの研究では、生物界で最も強固な構造組織の 一つであるシャコの捕脚に見られるキチン繊維のらせん 積層を模倣した CFRP 細板(40mm×180mm×4mm)を 製作して 3 点曲げと 4 点曲げ載荷実験を行った¹⁾²⁾³⁾⁴⁾⁵⁾. 荷重一変位曲線,最大荷重前後のエネルギー吸収量の比, 載荷中の供試体側面のひび割れ観察の比較により,配向 角度差の小さならせん積層構成にすることで CFRP の脆 性的な挙動が緩和されることを確認した.

しかしながら、この CFRP 供試体では梁軸方向より配 向角度差のある繊維が供試体側面で目切れとなる. 観察 においても側面の目切れ箇所からのひび割れ発生・進展 が多く確認されており、供試体に目切れがあることで損 傷や破壊挙動に何らかの影響を与えていると考えられる.

以上を踏まえて、本研究では目切れの影響が起こらな いようにするために、らせん積層を含む2種類の積層構 成の CFRP 平板(200mm×200mm×4mm)を作成し、 点載荷と面載荷の二つの載荷条件により載荷を行い、曲 げ挙動について比較検討を行った.

2. 実験方法

2.1 プリプレグ

CFRP の成形にはプリプレグによるオートクレーブ法 を用いた.プリプレグとは、炭素繊維基材に着色剤、充 填材等を適正な割合で混合した樹脂を含侵させたシート 状のもので、かつ硬化させる前のものである.使用した プリプレグは三菱レイヨン製の UD(Uni-Directional)プリ プレグで一方向に繊維が整列されたものである.プリプ レグ目付は 187.3(g/m2)、繊維目付は 124.3(g/m2)、繊維 含有率は 66.4(wt%)となっている.

2.2 供試体

供試体はプリプレグを積層して製作する. 平板供試体 の辺方向を配向角 0°とし,角度を変えて積層していく. 製作する供試体の積層構成は圧縮面を1層目とし,反時 計回りを正方向として配向角を増やしながら積層してい く.表1の[]内の配向角を順番に積層していき,繰り返 し回数を下付きで表した. 積層構成によって名称を CP, SH9とする. 供試体の寸法は縦 200mm,横 200mm,厚 表1 供試体積層構成

名称	枚数	積層構成
СР	40	[0/90]20
SH9	40	[0/9/18/27/36/45/54/63/72/81/90/99
		/108/117/126/135/144/153/162/171]2

図1 供試体作製手順

図2 点載荷載荷条件

図3 面載荷載荷条件

さ約4mm となっている.

供試体は図1のようにオートクレーブ法を用いて製作 した. 積層構成 CP の場合はプリプレグを 200mm 四方, SH の積層構成の場合は 290mm 四方に裁断し,積層構 成に合わせて積層していく.その際に、層間に気泡が入 らないよう,丁寧に圧力をかけながら貼り合わせていき, 積層したプリプレグをピールプライクロス、ブリーザー ファブリック,バキュームバックの順に覆い,シーラン トテープで上下面と真空引き口の真空ホースを密着した. その真空パックを上下1枚ずつ厚さ2mmのステンレス 板で挟み,用意した加圧器具で全体を加圧する.加圧し たプリプレグを電気炉に入れて室温から 80 度まで毎分 1 度ずつ温度を上げ,80 度を1時間維持,さらに130 度 まで毎分1度ずつ温度を上げ、130度を2時間維持する ことで CFRP を成形する. 完成した CFRP について、 SH9 の供試体は 200mm 四方に裁断し,供試体とした. 供試体の名称は(載荷方法)-(積層構成)-(供試体番号),の 順で表す.載荷方法の名称は点載荷を P(point-loading), 面載荷を S(surface-loading)と表す.供試体は載荷方法と 積層構成の組み合わせごとに3枚ずつ作製し、それぞれ に1,2,3,と番号を振った.

2.3 載荷条件

載荷実験装置には、オートグラフ(SHIMADZU AG-1250kN)を使った. 点載荷と面載荷の方法をそれぞれ図 2 と図 3 に示す. 点載荷は支点間距離を 150mm, せん 断スパンは 75mm, 面載荷は支点間距離, せん断スパン は 50mm とし, いずれも載荷速度 2.0mm/min の変位制 御で実験を実施した. 三軸ロゼットゲージは供試体の底 面スパン中央に貼付してひずみの計測を行い, 載荷実験 中の供試体の底面と斜め上側からのビデオ撮影も行う. 最大荷重は 125kN とし, これ以上続けると供試体が完 全に破断すると判断したときに実験終了とした.

3 実験結果

3.1 荷重変位曲線

実験で計測した荷重と変位の関係を図 4, 図 5, 図 6, 図 7 に荷重変位曲線として示す.荷重と荷重計測時の変 位については(荷重,変位)として以下では表す.単位に ついて,荷重は kN,変位は mm である.

3.1.1 点載荷

まず図 4 の CP について,最大荷重と最大荷重時変位 は供試体番号順に(21.20, 12.99),(20.33, 13.24),(20.30, 9.84)となった. P-CP-1, P-CP-2 は最大荷重直後の大き な荷重降下の後に大きな荷重の増加はなく,緩やかに荷 重を低下させていった. P-CP-3 は最大荷重後に小さな 荷重減少と増加を繰り返した後変位が 11.29mm の時点 で大きな荷重降下が見られ,その後は P-CP-1 と P-CP-2 の供試体と同様の挙動を見せた.

次に図 5 の SH9 について,最大荷重と最大荷重時変 位は供試体番号順に(32.58, 12.18),(35.13, 11.43), (32.25, 13.60)となった.いずれの供試体も最大荷重後 は大きな荷重降下を示した後に,荷重増加と減少を繰り 返しながら徐々に荷重が低下する結果となった.

3.1.2 面載荷

まず図 6 の CP について,最大荷重と最大荷重時変位 は供試体番号順に(54.05,14.02),(50.18,13.12),(51.78, 13.43)となった. S-CP-1 では 8.40mm, S-CP-2 では 8.67mm, S-CP-3 では 8.94mm でそれぞれ 11.55kN, 11.88kN, 12.78kN の荷重降下が見られ, その後最大荷 重を計測した. S-CP-2 と S-CP-3 は最大荷重後にしばら く荷重の増加が見られたが, その後大きな荷重降下が見 られ, その後は荷重が増加することはなかった. S-CP-1 は最大荷重後大きな荷重降下が見られ, そのあと少しの 荷重増加が起こり, 次の荷重降下後は荷重の増加が起こ らなかった.

次に図 7 の SH9 について, 第一ピーク荷重と第一ピ ーク荷重時変位は供試体番号順に(40.43, 8.43), (43.15, 8.95), (45.63, 9.13)となった. いずれの供試体も最大荷 重後大きな荷重の降下が見られ, その後は荷重降下を繰 り返しながらも全体的には荷重を増加していき, S-SH9-1 は 29.36mm 時点で 40.82kN と最大値を計測する結果 となった.

3.2 エネルギー吸収量の比

図8の荷重変位曲線において、曲線の下の面積をエネ ルギー吸収量として算出する.算出には区分求積法を用 いた.変位0mmから最大荷重時変位までのエネルギー吸 収量(①)と最大荷重時変位からさらに最大荷重時変位の 45%分の変位までのエネルギー吸収量(②)との比率(②/ ①)を算出する.算出した結果を図9,図10に示す.

3.2.1 点載荷

CP について, エネルギー吸収量の比は供試体番号順 に 0.62, 0.47, 0.82, となり, 平均値は 0.64 であった.

SH9 について, エネルギー吸収量の比は供試体番号 順に 0.66, 0.52, 0.60 となり, 平均値は 0.60 であった.

CP にばらつきはあったが, SH9 よりもわずかにエネ ルギー吸収量の比が大きくなる結果となった.

3.2.2 面載荷

CP について, エネルギー吸収量の比は供試体番号順 に 0.48, 0.83, 0.49 となり, 平均値は 0.60 であった.

SH9 について, エネルギー吸収量の比は供試体番号 順に 0.59, 0.62, 0.60 となり, 平均値は 0.61 であった.

また, SH9 については実験終了時までのエネルギー 吸収量の比を算出した結果, 4.71, 4.33, 4.47 となり, 平均値は 4.47 であった.

S-CP-2 で平均値を底上げする形となったが, SH9 の 方がエネルギー吸収量の比が大きくなる結果となった.

3.3 実験後の供試体観察

実験後の供試体について,底面部の写真を図 11,図 13 に,側方の写真を図 12,図 14 に示す.撮影に使用し た供試体は P-CP-1, P-SH9-3, S-CP-3, S-SH9-2 である. 肉眼で確認できる表面と内部の破壊状況について述べて いく.

3.3.1 点載荷

P-CP-1 について,底面部は十字にひび割れが起きていた.ひび割れは繊維の方向に沿って進展していた.内部も十字のひび割れが幾重にも起こっていることが観察できた.

次に P-SH9-3 について,最底面は繊維に沿ったひび割 れが起きており,側面からみると内部はねじれるように ひび割れが進展している様子が確認できた.

図9 エネルギー吸収量の比(点載荷)

図10 エネルギー吸収量の比(面載荷)

3.3.2 面載荷

S-CP-3 について,載荷面内部にはひび割れが確認されなかった.ただし,載荷面の縁に沿って繊維が大きく破断している様子が確認できた.

次に S-SH9-2 について,載荷面の周辺ではひび割れは 確認されず,支点周辺での大きなひび割れが確認された. そのひび割れを境に底面側に折れ曲がるようにして破壊 が進んでいた.

4 考察

まず,荷重変位曲線から第一ピーク荷重と第一ピーク 荷重時変位について比較する.

点載荷において第一ピーク荷重の平均値を比べると CP は 20.61kN, SH9 は 33.32kN と SH9 の方が 12.71kN 大きい結果となった.一方で先行研究として行っていた 3 点曲げ載荷実験と 4 点曲げ載荷実験ではいずれも CP の方が平均 1.31kN, 2.23kN 大きくなるという結果であ った. これについては前述したように目切れの影響が起 こらない供試体であることが関係していると考えられる. 今回の実験で載荷点下にある繊維は全て引張方向に抵抗 する向きとなっており, CP, SH9 いずれの供試体も引 張に抵抗する繊維の本数は同じである. さらに SH9 の 繊維方向は多くの方向を向いており, CP に比べて繊維 一方向に対する荷重が分散された結果, 第一ピーク荷重 が大きくなったと考えられる.

次に面載荷について,第一ピーク荷重の平均値を比べ ると CP の方が 8.93kN 大きい結果となった.これにつ いては,載荷面の縁に対する繊維の本数と方向を考慮し て,点載荷と同様の考察をすべきと考えており,今後検 討していきたい.

次にエネルギー吸収量の比について比較する.

P-CP, P-SH9, S-CP, S-SH9 各方法で平均値はそれぞ れ 0.64, 0.60, 0.60, 0.61, と大きな違いが見られなか った. これについては, CP では第一ピーク荷重後に少 し荷重の保持が見られたこと, SH9 では荷重の増減は 見られたが,全体として大きな低下となっていなかった ことが要因となり,大きな違いを生まなかったと考えら れる.

しかしながら, S-SH9 は第一ピーク荷重後に大きな荷 重降下はあるものの,その後全体的には荷重上昇を継続 して第一ピーク荷重と同等のレベルにまで至っている. これにより大きなエネルギー吸収量の比を生み出してい る.

最後に,実験後供試体写真の観察について, CP では 直交二方向に割れが進展しており局所的な破壊が発生し たことに対して, SH9 では大きく広がるような破壊が 観察された.これにより変形も SH9 では局所的ではな く広域的に生じている.また,打音によって確認したと ころ, SH9 は全方向に広く剥離によると考えれる鈍い 音がしたのに対して, CP ではこうした鈍い音が生じる 領域は限られた.SH9 の積層構成により繊維の配向角 が多方向であることにより,内部における剥離が広がっ てこうした挙動を生んでいると考えられる.

以上のようなメカニズムについては、今後ビデオ映像 の分析により、損傷と破壊を荷重変位曲線と関連付けて 行っていく必要がある.

5 まとめ

本研究では、らせん積層構成の CFRP を作成して、 CFRP 平板の曲げ挙動を点載荷および面載荷実験で確認 した.

実験の結果,荷重変位曲線において,供試体の繊維目 切れの影響を無くしたことでらせん積層の CFRP の最大 荷重が大きくなることが確認された.

次にエネルギー吸収量の比において, 同条件下では 積層構成によるエネルギー吸収量の比に違いは見られな かったが,らせん積層は全体的に大きな値を示した.

最後に実験後の供試体写真の観察において, CP では 破壊が局所的だったのに対し、SH9 では破壊がより広 範囲に起こることが確認された.

図 11 実験後供試体底面写真(点載荷)

図 12 実験後供試体側方写真(点載荷)

図13 実験後供試体底面写真(面載荷)

図 14 実験後供試体側方写真(面載荷)

参考文献

- L. K. Grunenfelder, N. Susangpanya, C. Salinas, GMilliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S. R. Nutt, P. Zavattieri & D. Kisailus: Bio-inspired impact-resistant composites, Acta Biomaterialia, Vol. 10, No. 9, pp. 3997-4008, 2014.
- 2)石澤郁馬, 細目貴之, 松本高志: らせん積層 CFRP の 曲げ破壊形態, 第 73 号土木学会北海道支部論文報告 集.
- 3)細目貴之,石澤郁馬,松本高志:らせん積層 CFRP の 曲げ特性,第73号土木学会北海道支部論文報告集.
- 4)近藤健太, 松本高志: UD プリプレグを用いたらせん積 層構成 CFRP の作製精度と材料特性の考察, 第 73 号 土木学会北海道支部論文報告集.
- 5)石澤郁馬,近藤健太,松本高志:らせん積層 CFRP の 4 点曲げ挙動に関する実験,第 74 号土木学会北海道 支部論文報告集.