改良 ZIG-ZAG 理論による周辺単純支持異方性積層板の 自由振動解析

Free vibration analysis of simply supported anisotropic laminated plate by using improved ZIG-ZAG theory

函館工業高等専門学校 正 員 渡辺 力 (Chikara WATANABE) 函館工業高等専門学校 学生会員 今淵 達 (Tohru IMABUCHI) 函館工業高等専門学校 学生会員 木寅海斗 (Kaito KITORA) 函館工業高等専門学校 学生会員 松本悠生 (Yuui MATSUMOTO)

1. まえがき

繊維強化プラスチック(FRP)などの異方性積層板 では板厚比が大きくなると ZIG-ZAG 変位の影響が顕 著に現れて,等価単層理論では高次理論を用いても精 度が悪くなる¹⁾. この ZIG-ZAG 変位の影響を考慮す るための ZIG-ZAG 理論の研究が盛んに行われている. Murakami は,ZIG-ZAG 変位を表すために Murakami 関数と呼ばれる ZIG-ZAG 関数²⁾を導入しているが, この関数では層間で ZIG-ZAG 関数の勾配が異符号と なるように強制しているので,外側弱層となる場合に は精度が悪くなる.それに対して,Tessler らの Refined ZIG-ZAG 理論(RZT)³⁾では面外せん断弾性定数を 考慮した ZIG-ZAG 関数を用いているが,等方性材料 には適用できないことに加え,面外変位 w に対する ZIG-ZAG 関数が開発されていない.

一方,渡辺は,RZTのZIG-ZAG関数を等方性平板 にも適用できるように改良するとともに,厚板解析に 有効な面外変位 w に対する ZIG-ZAG 関数を開発して いる⁴⁾.この改良 ZIG-ZAG 理論では,薄板から厚板 までの異方性積層板の曲げ解析において,精度の良い 変位と応力が得られる.

本研究では,異方性積層板の自由振動解析における 改良 ZIG-ZAG 理論の精度を検証することを目的とし ている.周辺単純支持された直交積層板を計算モデル して,厳密解に対する固有振動数の精度を調べる.固 有振動モードは,異方性積層板に対する新たなモード 分類方法により,厳密解に対応した固有振動モードに 分類する.本報告では,3層の直交積層板([0/90°/0]) について,固有振動数の精度を調べ,モード分類を行っ た結果について報告する.

2. ZIG-ZAG 関数

2.1 既往の ZIG-ZAG 関数

ZIG-ZAG 変位の板厚方向の分布を表す ZIG-ZAG 関数として,次の関数が用いられている.

(1) Murakami 関数

Murakami の ZIG-ZAG 理論(MZT)では,変位

凶-1 ZIG-ZAG 肉奴

u, v, wに対して次の ZIG-ZAG 関数が用いられる $^{2)}$.

$$\phi_u^{(k)} = \phi_v^{(k)} = \phi_w^{(k)} = (-1)^k \frac{2}{h^{(k)}} (z - z_m^{(k)})$$
 (1)

ここに、 $\phi_u^{(k)}$ は変位 u に対する ZIG-ZAG 関数で、 $h^{(k)}$ は第 k 層の厚さ、 $z_m^{(k)}$ は第 k 層の中央点の z 座標値で ある.なお、図-1(a) に示すように、Murakami 関数 では隣接する層の関数の勾配を異符号となるように強 制しているので、外側弱層の場合には精度が悪くなる.

(2) RZT の関数

Refined ZIG-ZAG 理論(RZT)では、変位 u, v に対して次の ZIG-ZAG 関数が用いられる ³⁾.

$$\begin{split} \phi_{u}^{(k)} &= \left(z + \frac{h}{2}\right) \left(\frac{G_{u}}{\overline{Q}_{55}^{(k)}} - 1\right) + \sum_{i=2}^{k} h^{(i-1)} \left(\frac{G_{u}}{\overline{Q}_{55}^{(i-1)}} - \frac{G_{u}}{\overline{Q}_{55}^{(k)}}\right) \\ \phi_{v}^{(k)} &= \left(z + \frac{h}{2}\right) \left(\frac{G_{v}}{\overline{Q}_{44}^{(k)}} - 1\right) + \sum_{i=2}^{k} h^{(i-1)} \left(\frac{G_{v}}{\overline{Q}_{44}^{(i-1)}} - \frac{G_{v}}{\overline{Q}_{44}^{(k)}}\right) \end{split}$$

$$(2)$$

ここに, $\overline{Q}_{55}^{(k)}, \overline{Q}_{44}^{(k)}$ は面外せん断弾性定数で, G_u, G_v はその重み付き平均であり次式で与えられる.

$$G_u = \left(\frac{1}{h} \sum_{k=1}^{N_l} \frac{h^{(k)}}{\overline{Q}_{55}^{(k)}}\right)^{-1}, \quad G_v = \left(\frac{1}{h} \sum_{k=1}^{N_l} \frac{h^{(k)}}{\overline{Q}_{44}^{(k)}}\right)^{-1} (3)$$

図-1(b) に示すように, Murakami 関数とは違い, RZT の関数では関数値が上下縁でゼロとなる. なお,式(2),

表-1 改良 ZIG-ZAG 理論に用いる ZIG-ZAG 関数の勾配と ZIG-ZAG 関数値

$egin{array}{c} eta_u^{(k)},\ eta_v^{(k)} \end{array}$	$eta_w^{(k)}$
$\overline{Q}_{55}^{(k)}$ の値に異なる層があるとき: $eta_u^{(k)}=G_u/\overline{Q}_{55}^{(k)}$ (a)	式 (a) と (b) を用いるとき:
$\overline{Q}_{44}^{(k)}$ の値に異なる層があるとき: $\beta_v^{(k)} = G_v / \overline{Q}_{44}^{(k)}$ (b)	$\beta_w^{(k)} = -\frac{1}{\overline{Q}_{33}^{(k)}} \left(\overline{Q}_{55}^{(k)} \beta_u^{(k)} + \nu_{12} \overline{Q}_{44}^{(k)} \beta_v^{(k)} \right) c_{z1}^{(k)}$
$\overline{Q}_{55}^{(k)}$ の値が全層同じとき : $eta_u^{(k)} = G_u c_{z0}^{(k)} / \overline{Q}_{55}^{(k)}$ (c)	式 (c) と (b) を用いるとき:
$\overline{Q}_{44}^{(k)}$ の値が全層同じとき : $\beta_v^{(k)} = G_v c_{z0}^{(k)} / \overline{Q}_{44}^{(k)}$ (d)	$\beta_w^{(k)} = -\frac{1}{\overline{Q}_{33}^{(k)}} \left(\overline{Q}_{55}^{(k)} c_{z2}^{(k)} + \nu_{12} \overline{Q}_{44}^{(k)} \beta_v^{(k)} c_{z1}^{(k)} \right)$
ここに,	式 (a) と (d) を用いるとき:
$c_{z0}^{(k)} = 1 - \frac{4}{3h^2} (z_k^2 + z_k z_{k+1} + z_{k+1}^2), c_{z1}^{(k)} = (z_k + z_{k+1})/2$	$\beta_w^{(k)} = -\frac{1}{\overline{Q}_{33}^{(k)}} \left(\overline{Q}_{55}^{(k)} \beta_u^{(k)} c_{z1}^{(k)} + \nu_{12} \overline{Q}_{44}^{(k)} c_{z2}^{(k)} \right)$
$c_{z2}^{(k)} = (z_k + z_{k+1}) \left\{ 3 - 2(z_k^2 + z_{k+1}^2)/h^2 \right\} / 6$	式 (c) と (d) を用いるとき(等方性):
(注意) $\beta_w^{(k)}$ は、 $\beta_u^{(k)}$ と $\beta_v^{(k)}$ の組み合わせに応じて右表の式を用いる.	$\beta_w^{(k)} = -\frac{1}{\overline{Q}_{33}^{(k)}} \left(\overline{Q}_{55}^{(k)} + \nu_{12} \overline{Q}_{44}^{(k)} \right) c_{z2}^{(k)}$
層境界の ZIG-ZAG 関数値: $\phi_{k+1}^u = \phi_k^u + h^{(k)} \beta_u^{(k)}, \ \phi_{k+1}^v = \phi_k^v + h^{(k)} \phi_{k+1}^v$	$(k) \beta_v^{(k)}, \ \phi_{k+1}^w = \phi_k^w + h^{(k)} \beta_w^{(k)} \ (k = 1 \sim N_l)$

(3) から分かるように, RZT の関数を等方性平板に用 いると関数値がゼロとなって適用できない.

2.2 改良 ZIG-ZAG 理論

改良 ZIG-ZAG 理論では次の ZIG-ZAG 関数が用い られる⁴⁾.

$$\phi_u^{(k)} = \beta_u^{(k)} z + a_u^{(k)}, \qquad \phi_v^{(k)} = \beta_v^{(k)} z + a_v^{(k)}
\phi_w^{(k)} = \beta_w^{(k)} z + a_w^{(k)}$$
(4)

ここに,

$$a_{u}^{(k)} = \frac{1}{2}(\phi_{k}^{u} + \phi_{k+1}^{u}) + z_{m}^{(k)}(\phi_{k}^{u} - \phi_{k+1}^{u})/h^{(k)}$$

$$a_{v}^{(k)} = \frac{1}{2}(\phi_{k}^{v} + \phi_{k+1}^{v}) + z_{m}^{(k)}(\phi_{k}^{v} - \phi_{k+1}^{v})/h^{(k)}$$

$$a_{w}^{(k)} = \frac{1}{2}(\phi_{k}^{w} + \phi_{k+1}^{w}) + z_{m}^{(k)}(\phi_{k}^{w} - \phi_{k+1}^{w})/h^{(k)}$$
(5)

式 (4) の ZIG-ZAG 関数の勾配 $\beta_u^{(k)}$, $\beta_v^{(k)}$, $\beta_w^{(k)}$ は, 表-1 に示すように,まず面外せん断弾性定数の板厚方向の 分布に応じて $\beta_u^{(k)}$, $\beta_v^{(k)}$ を定め,それらの組み合わせ に応じて $\beta_w^{(k)}$ を求める.式 (5) の ϕ_k^u などは図 – 1(c) に示す層境界での ZIG-ZAG 関数値である.

3. 三次せん断変形理論に基づく固有方程式

本研究では、各種の ZIG-ZAG 理論の変位場を検討 するために、まず変位の3成分に完全な三次せん断変形 理論の変位場を用い、この3成分に ZIG-ZAG 項を付加 して定式化を行う。その他の変位場を用いる ZIG-ZAG 理論については、使用しない変位成分を固有方程式か ら削除して級数解を求める方法⁴⁾を用いて計算を行う。

ZIG-ZAG 変位を考慮した三次せん断変形理論 の変位場

第 k 層の変位を,完全な三次せん断変形理論の変位場に ZIG-ZAG 項を付加して次式で表す.

$$u^{(k)} = u_0 + z u_1 + z^2 u_2 + z^3 u_3 + \phi_u^{(k)} \psi_u$$

図-2 異方性積層板

$$v^{(k)} = v_0 + z v_1 + z^2 v_2 + z^3 v_3 + \phi_v^{(k)} \psi_v$$

$$w^{(k)} = w_0 + z w_1 + z^2 w_2 + z^3 w_3 + \phi_w^{(k)} \psi_w \quad (6)$$

ここに, u_i, v_i, w_i は中央面 (z=0) における変位成分 で, ψ_u, ψ_v, ψ_w が ZIG-ZAG 変位である.また, $\phi_u^{(k)}$, $\phi_v^{(k)}, \phi_w^{(k)}$ は式 (4) の ZIG-ZAG 関数である.式 (6) は, Kant and Swaminathan の変位場に ZIG-ZAG 項を付 加しもので,等価単層理論(12 成分)に比べると ZIG-ZAG 変位の 3 成分が追加されることになる.ただし, この ZIG-ZAG 変位の数は積層数に依存しない.

3.2 固有方程式

式(6)を用いて、仮想ひずみエネルギー δU と仮想運 動エネルギー δK を計算し、それらを Hamilton の原 理に用いることにより、15 個の運動方程式が得られる. 式(6)の変位成分を周辺単純支持の境界条件を満足す る変位関数で仮定し、それらを運動方程式に用いるこ とで、任意の(m,n)項に対して次の固有方程式が得ら れる.

$$\left[\sum_{k=1}^{N_l} \boldsymbol{S}_{mn}^{(k)}\right] \boldsymbol{F}_{mn} = \left[\boldsymbol{M}_{mn}\right] \boldsymbol{F}_{mn} \qquad (7)$$

ここに、第k層の剛性行列 $S_{mn}^{(k)}$ 、質量行列 M_{mn} は15次の正方行列であり、未知フーリエ係数ベクトル F_{mn} は15次の列ベクトルである.式(6)以外の変位場を用いる厚板理論では、表-2に示すように用いない変位に対応するフーリエ係数を削除して、固有方程式を縮小することにより容易に計算できる⁴⁾.

平成30年度 土木学会北海道支部 論文報告集 第75号

表2	各種 ZIG-ZAG 理論に用いるフーリ	リエ係数
----	----------------------	------

田論		フーリエ係数												daf			
生間	Model	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	dor
	ZZ30	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	U_z^{mn}	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	V_z^{mn}	W_0^{mn}	削除	削除	削除	削除	11
	ZZ30W	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	U_z^{mn}	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	V_z^{mn}	W_0^{mn}	削除	削除	削除	W_z^{mn}	12
	ZZ31W	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	U_z^{mn}	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	V_z^{mn}	W_0^{mn}	W_1^{mn}	削除	削除	W_z^{mn}	13
3rd	ZZ32W	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	U_z^{mn}	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	V_z^{mn}	W_0^{mn}	W_1^{mn}	W_2^{mn}	削除	W_z^{mn}	14
	ZZ33W	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	U_z^{mn}	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	V_z^{mn}	W_0^{mn}	W_1^{mn}	W_2^{mn}	W_3^{mn}	W_z^{mn}	15
	ES30	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	削除	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	削除	W_0^{mn}	削除	削除	削除	削除	9
	ES33	U_0^{mn}	U_1^{mn}	U_2^{mn}	U_3^{mn}	削除	V_0^{mn}	V_1^{mn}	V_2^{mn}	V_3^{mn}	削除	W_0^{mn}	W_1^{mn}	W_2^{mn}	W_3^{mn}	削除	12
	ZZ10	U_0^{mn}	U_1^{mn}	削除	削除	U_z^{mn}	V_0^{mn}	V_1^{mn}	削除	削除	V_z^{mn}	W_0^{mn}	削除	削除	削除	削除	7
1st	ZZ11W	U_0^{mn}	U_1^{mn}	削除	削除	U_z^{mn}	V_0^{mn}	V_1^{mn}	削除	削除	V_z^{mn}	W_0^{mn}	W_1^{mn}	削除	削除	W_z^{mn}	9
	ES10	U_0^{mn}	U_1^{mn}	削除	削除	削除	V_0^{mn}	V_1^{mn}	削除	削除	削除	W_0^{mn}	削除	削除	削除	削除	5
	ES11	U_0^{mn}	U_1^{mn}	削除	削除	削除	V_0^{mn}	V_1^{mn}	削除	削除	削除	W_0^{mn}	W_1^{mn}	削除	削除	削除	6
変	位成分	u_0	u_1	u_2	u_3	ψ_u	v_0	v_1	v_2	v_3	ψ_v	w_0	w_1	w_2	w_3	ψ_w	-

(注意) Model 名の ZZ は ZIG-ZAG 理論, ES は等価単層理論を表す. ZZijW の意味は, iが 1 次または 3 次せん断変形理論を, j は面外変位 w の変位場における z の次数を, W は w の変位場に ZIG-ZAG 項を付加することを意味する.

表3	固有振動数の誤差	(一次せん断変形理論型,	h/b=1/10)	(%)
----	----------	--------------	-----------	-----

(a) 面外振動モード I-B モード

Model	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)	
ZZ11W	1.07	1.22	1.83	1.74	1.65	1.86	2.01	1.93	1.98	
MZ11W	1.50	2.16	2.69	1.83	1.99	2.37	2.05	2.07	2.25	
ES11	9.91	6.70	5.72	17.04	14.54	11.14	17.19	15.91	13.65	
(b) 面外振動モード II-B モード										
Model	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)	
ZZ11W	7.14	6.92	6.22	6.86	6.79	6.74	6.41	6.40	6.42	
MZ11W	7.23	7.18	6.46	6.95	7.10	7.28	6.50	6.70	6.95	
ES11	8.96	10.31	12.64	8.56	9.82	11.90	8.00	9.26	11.33	
	(c) 面外振動モード III-B モード									
Model	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)	
ZZ11W	1.24	1.30	1.84	0.92	0.91	0.91	2.11	2.10	2.08	
MZ11W	1.38	1.50	2.30	1.18	1.18	1.19	2.53	2.52	2.51	
ES11	22.77	22.06	20.85	13.12	12.96	12.72	11.37	11.31	11.21	

4. 数值計算例

4.1 計算モデル

計算モデルは、図-2に示す長さ*a*,幅*b*,板厚*h*の周 辺単純支持された直交積層板であり、形状比を*a/b*=1 とする.層数*N_l*を3とし、配向角を[0/90°/0]とす る.材料定数には次の値を用いる.

 $E_1/E_2 = 25, \quad E_3 = E_2, \quad G_{12} = G_{13} = 0.5E_2$ $G_{23} = 0.2E_2, \quad \nu_{12} = \nu_{13} = \nu_{23} = 0.25$

4.2 一次せん断変形理論型 ZIG-ZAG 理論の精度

一次せん断変形理論に基づく ZIG-ZAG 理論の精度
 を検証する.表 - 3 は、板厚比 h/b=1/10 の直交積
 層板に一次せん断変形理論に基づく ZIG-ZAG 理論
 ZZ11W, MZ11W, ES11 を用いたものである.

変位場には *u*, *v*, *w* に対して *z* の 1 次式までの項ま

でを用いて, ZIG-ZAG 項を付加した変位場を用いて いる. ZZ11W は改良 ZIG-ZAG 理論を用いた場合で, MZ11W は Murakami 関数を用いた場合である.また, ES11 はそれらから ZIG-ZAG 項を削除した等価単層理 論を用いた場合である.

固有振動モードは、図-3に示す面外振動モード I-B, II-B, III-B に分類している.これらは、等方性平 板での Mindlin の曲げ振動モード (逆対称モード), I-A(flexural) モード, II-A(thickness-twist) モード, III-A(thickness-shear) モードに対応するモードである. ZIG-ZAG 理論を用いた対称直交積層板の計算では、曲 げモードが伸縮モードと連成し、完全な曲げ振動モード に分離できないことから、このように呼ぶこととする.

表-**3**は、半波長数 *m*,*n* が 3 半波形までのモードに ついて、面外振動モード I-B、III-B、III-B に分類し、固

有振動数の厳密解に対する誤差(%)を示している.

面外振動モード I-B では, 等価単層理論 ES11 を用い 場合には 6~18%もの誤差が生じている. それに対して, 改良 ZIG-ZAG 理論を用いた ZZ11W では, 1~2%の誤 差となっており, 高次波形の (3,3) モードでも誤差は 2%以下となっている. ZIG-ZAG 理論の効果が大きく 表れている. また, Murakami 関数を用いた MZ11W の計算結果と比較すると, 改良 ZIG-ZAG 理論 ZZ11W の方が, どの波形に対しても精度が良くなっている.

面外振動モード II-B でも同様のことが言えるが, ZIG-ZAG 理論を用いても 6~7%程度の誤差が生じて いる.一方,面外振動モード III-B では ZIG-ZAG 理 論による改善効果が極めて大きく,等価単層理論 ES11 では 11~23%程度もの誤差が生じているが,ZIG-ZAG 理論では 1~2%程度の誤差となっている.また,II-B と III-B モードでも,Murakami 関数を用いた MZ11W の計算結果と比べて改良 ZIG-ZAG 理論 ZZ11W の方 が,どの波形に対しても精度が良くなっている.

図-3 には、改良 ZIG-ZAG 理論 ZZ11W による固有 振動モード図を示す.図は、モードを面外振動モード I-B, II-B, III-B, 面内振動モード I-P, II-P モードの 5 つに分類した半波長数 (1,1), (1,2), (1,3) の波形につい て示している.

ZIG-ZAG 理論を用いた直交積層板の自由振動解析 では,基本的に曲げモードが伸縮モードと連成するが, 本計算例 [0/90°/0] のように板厚方向に対称に積層し た対称直交積層板では伸縮モードは曲げモードと連成 しない.このモードを面内振動モード I-P, II-P と呼 んでいる.なお,ZIG-ZAG 理論では,式(6)において 付加した3つの ZIG-ZAG 項は曲げ項であるので,こ の面内振動モードに対して効果は無い.

なお,紙面の都合により,三次せん断変形理論に基づく ZIG-ZAG 理論の結果については当日報告する.

5. まとめ

改良 ZIG-ZAG 理論を自由振動解析に適用し,厳密 解に対する固有振動数の精度を調べた.さらに,固有 振動モードを面外振動モードと面内振動モードに分類 した.

3層 [0/90°/0]の周辺単純支持異方性積層板の数値 計算結果より、変位場に ZIG-ZAG 項を付加する ZIG-ZAG 理論の精度改善効果が自由振動解析でも大きいこ とを確認した.

謝辞: 本研究は JSPS 科研費 JP16K06480 の補助を 受けた.ここに,記して感謝の意を表する.

参考文献

- 渡辺 力:等価単層理論に基づく各種の厚板理論による 異方性積層板の級数解ならびに面外応力の改良,構造工 学論文集, Vol.63A, pp.14-27, 2017.
- 2) Murakami, H. : Laminated composite plate theory with improved in-plane responses, *Journal of Applied Mechanics*, Vol.53, pp.661-666, 1986.
- 3) Tessler, A., Di Sciuva, M. and Gherlone, M. : Refined zigzag theory for laminated composite and sandwich plates, Technical Publication 215561, National Aeronautics and Space Administration, 2009.
- (波辺 力:効果的な ZIG-ZAG 関数の開発と異方性積層 板ならびに等方性平板の厚板解析への適用,土木学会論 文集 A2(応用力学), Vol.74, No.1, pp.75-91, 2018.