C - 0 3

落体の反発挙動に関する斜入射実験

A sloping drop experiment on the repulsive behavior of falling objects

 \bigcirc

(株) 構研エンジニアリング
 (株) 構研エンジニアリング
 (株) 構研エンジニアリング
 名古屋工業大学
 名古屋工業大学
 東電設計(株)

正会員	鈴木健太郎	(Kentaro Suzuki)
非会員	阿部和樹	(Kazuki Abe)
フェロー	川瀬良司	(Ryoji Kawase)
正会員	前田健一	(Kenichi Maeda)
学生員	田中敬大	(Takahiro Tanaka)
正会員	中瀬仁	(Hitoshi Nakase)

1. はじめに

道路施設等の落石対策設計は落石対策便覧¹⁾に準拠して いるのが現状である.設計における跳躍高さは,同便覧よ り便宜的に2mと設定されることが多い.また,落石の運 動形態を予測するために,落石シミュレーションを適用し た設計事例も増加しているものの,それらのパラメータに より計算結果が異なることから,パラメータ設定が非常に 重要となっている.落石シミュレーションにおける重要な パラメータの一つである反発係数は,我々研究グループで 実施した小型模型を用いた室内実験においては岩体同士で 0.2~0.7 程度²⁾となっていた.

一方,防護対象施設周辺はアスファルトやコンクリート 舗装等の比較的弾性係数が小さい材料で構築される場合が 多く、衝突対象落体の規模(大小)によって反発係数が大 きく変化する可能性が高いと想定される.特に,巨石等の 落体径が大きい場合にはより反発係数が小さいものと考え

図-1 斜入射実験概要 (H5.0)

られ、反発係数を適正に評価することで対策工の最小化・ 適正化を図ることが可能となる.しかしながら、これらの 条件により反発係数を検証した事例は少ない.

本研究では,落石の運動形態を再現するために必要な反 発係数の適正評価を目的として,巨石を模擬したコンクリー ト製の落体を用い,図-1に示すような斜入射実験装置を 製作し,アスファルト舗装への斜入射実験を行った.

2. 実験概要

表-1 に実験ケース一覧を示す.また,図-2にはコン クリート製の落体形状を示す.実験に用いた落体は,直径 $\phi = 2 \text{ m}$ の模擬球体であり,質量はm = 9.0 tonとなってい る.コンクリートの設計基準強度は $f'_{ck} = 55 \text{ MPa}$,実験時 の圧縮強度 $\sigma = 40.4 \text{ MPa}$ (7日強度)であった.なお,衝突 時の破損を抑制するためにポリプロピレン短繊維をコンク リート体積 4.1 m³ あたり 5 袋 (体積混入率 $V_f = 6.1$ %)混 入した.

写真-1にUAVによる実験状況写真を示す.実験時の斜

表-1 実験ケース一覧

実験	放射高さ	落体設置	位置エネ	架台角度	
ケース名	(m)	高さ (m)	ルギー(kJ)	(°)	
H0.5	0.522	1.740	15.66	5.4	
H5.0	5.050	7.050	63.45	10.0	

(a) H0.5

(b) h5.0 写真-1 実験状況写真

(a) H0.5 (t = 32.5 ms)

(b) H5.0 (t = 52.5 ms) 写真-2 落体最大貫入時の高速度カメラ画像

入射装置から放たれる高さ(放射高さ)は地表面からそれ ぞれ0.5 および5.0 mとなっている。実験は北海道江別市に ある寒地土木研究所の角山実験場内のアスファルト舗装上 にて行った。衝突部であるアスファルト舗装の厚さは6 cm 程度であり、その直下は砂礫主体の盛土地盤となっている。 簡易動的コーン貫入試験結果は、表層1 mまでは N_d = 15 ~ 30 程度であった。重錘はストッパーを外すと自重により装 置上を転がる仕組みになっており、落体は放射位置から放 物運動となりアスファルト舗装に衝突する。

本実験では、アスファルト舗装への衝突痕形状計測のほ

(a) H0.5

写真-3 衝突位置のアスファルト表面状況

表-2 As 舗装衝突痕形状一覧

計測位置	単位	H0.5	H5.0
衝突痕の深さ(鉛直方向)	(mm)	16	145
衝突痕の直径1(水平方向)	(mm)	770	1,310
衝突痕の直径2(奥行き方向)	(mm)	970	1,050

図-3 As 舗装衝突痕計測概要図

か,重錘にはターゲットを貼り付け,高速度カメラにより反 発挙動を計測した.高速度カメラのフレームレートは400 fps であり, PTV 解析により落体速度等を算出する計画で あったが,撮影対象が大きくターゲットを自動追跡できな かったことから,各画像より目視にて移動量を算出した.

3. 実験結果

3.1 計測結果

写真-2にアスファルト舗装への落体最大貫入時における 高速度カメラ画像,写真-3に衝突後のアスファルト舗装 状況を示す.また,表-2および図-3にはアスファルト 舗装の衝突痕形状計測値および計測概要図をそれぞれ示す.

両写真より, 衝突時には落体がアスファルト舗装に貫入 していることが分かる.表より, H0.5 に比べて H5.0 の衝 突痕の深さが著しく大きいことが分かる.なお, 奥行き方 向の直径は両者ともに大差は認められない.

3.2 落体の軌跡

図-4 に衝突付近における落体位置図(軌跡図)を示す. この落体位置は高速度カメラの撮影画像におけるターゲッ

図-5 各落体位置・各速度に関する時刻歴波形

トの変位量を読み取っている.なお,便宜上水平方向は入 射方向を,鉛直方向は反射方向をそれぞれ正とし,アスファ ルト面との接触位置をゼロとして整理している.

図より,落体の入射角度は H0.5 および H5.0 でそれぞれ 35.0 および 60.3 ° であり,放射高さが大きいほど入射角度 が大きいことが分かる.最大貫入位置は,H0.5 および H5.0 でそれぞれ衝突位置から水平方向に 142 および 260 mm,鉛 直方向で 64 および 238 mm となり,放射高さが大きいほど 最大貫入位置も大きくなっていることが分かる.最大反射 高さは,H0.5 および H5.0 でそれぞれ 32 および 71 mm で あり,最大反射高さも放射高さが大きいほど大きくなっている.

3.3 落体位置・速度に関する時刻歴波形

図-5に各落体位置および各速度の時刻歴波形を示す. 波形はアスファルト面に接触した時刻をゼロとし,速度に ついては前述の落体位置の変化量を速度に変換している. ここでは,鉛直方向は入射方向を正として整理している.

(a)図の落体位置については、水平方向の移動量が鉛直 方向に比べて著しく大きいことから、右軸に示すようにス ケールを変更して表示している。図より、水平方向の落体 位置は両ケースともにほぼ線形であるものの、H5.0ではt= 50~60 ms 程度の時刻間においてわずかに勾配が変化する。 鉛直方向では、H0.5 および H5.0 でそれぞれt=30 および 50 ms 程度で最大貫入を示し、その後130 および 220 ms 程 度でアスファルト面から離脱していることが分かる。

(b)図のうち,線速度は水平方向および鉛直方向の速度 を用いて三平方の定理により算出しているため,絶対速度 となる.図より,H0.5の水平方向は4m/s程度とほぼ同程 度の速度を保持し続けているのに対し,H5.0 は 50~60 ms 程度で水平方向の速度が 0.5 m/s 程度減少していることが分 かる.一方,鉛直方向は衝突時刻 t = 0 ms から急激に減少 し,H0.5 および H5.0 でそれぞれ 30 および 50 ms 程度で速 度がゼロとなる.その後,130 および 220 ms 程度まで負方 向(反射方向)の速度が観測されている.線速度は H0.5 お よび H5.0 でそれぞれ 30 および 50 ms 程度以降は水平方向 とほぼ同様の値となることから,アスファルト舗装に衝突 した場合には落体はほぼ水平移動となることが分かる.

3.4 落体速度・エネルギーに関する時刻歴波形

図-6に各落体速度および各エネルギーの時刻歴波形を 示す.ここで、回転速度とは角速度と半径から求めた回転 による落体の移動速度(転がると仮定した場合の落体の移 動速度)であり、回転エネルギーは角速度および慣性モー メントより算出している.

(a)図より,両ケースともに落体の最大貫入時刻までは 回転速度よりも線速度が大きく示されており,両速度とも に減少していることが分かる.また,最大貫入時刻以降は 線速度および回転速度はほぼ同程度となっており,線速度 は回転による移動により生じていることを示唆している.

(b)図より,両ケースともに最大貫入時刻までは落体の 各エネルギーは減少し,その後 H0.5 および H5.0 で位置エ ネルギーが一定となる 130 および 220 ms からはほぼ同程度 の値で推移していることが分かる.ここで,水平方向のエ ネルギーを除いて再度(b)図を整理すると(c)図のように なる.図より,位置エネルギーが一定となる時刻以降にお いて,全エネルギーは回転エネルギーとほぼ同程度の値と なることが分かる.

図-6 各落体速度・各エネルギーに関する時刻歴波形

表-3 高速度カメラ計測結果一覧(鉛直方向)

項目	H0.5			H5.0				
	時刻	単位	計測值	単位	時刻	単位	計測值	単位
(a) 衝突前の最大入射速度	-1.25	(ms)	4.415	(m/s)	-3.75	(ms)	10.909	(m/s)
(b) 最大貫入深さ	32.50	(ms)	64.014	(mm)	52.50	(ms)	238.180	(mm)
(c) 衝突後の最大反射速度	47.50	(ms)	-0.883	(m/s)	77.50	(ms)	-1.818	(m/s)
(d) 地表面離脱時刻	135.00	(ms)	0.000	(mm)	227.50	(ms)	0.000	(mm)
(e) 最大反射高さ	232.50	(ms)	-32.007	(mm)	342.50	(ms)	-70.909	(mm)

以上より,今回の実験ケースの範囲内においては,落体 の移動速度は最大貫入時刻以降においてはほぼ回転速度 と同程度となり,回転運動が支配的となることが明らかと なった.

4. 反発係数に関する考察

表-3に各時刻における高速度カメラ計測結果一覧を示 す.計測値(速度,位置)は鉛直方向を示している.表よ り,(a)衝突前の最大入射速度はH0.5 およびH5.0 でそれぞ れ 4.415,10.909 m/s,(c)衝突後の最大反射速度はそれぞれ 0.883,1.818 m/s となる.

反発係数は入射速度と反射速度の比で表されることから, これらの値を用いた反発係数はそれぞれ e = 0.200, 0.167 と 算出される.なお,前述のように最大貫入時刻以降は回転 運動が支配的になることから,落体自身の衝突痕から離脱 する際に回転運動により駆け上がり,反射速度が計測され たものと考えられる.

5. **まとめ**

本研究では,落石の運動形態を再現するために必要な反 発係数の適正評価を目的として,巨石を模擬したコンクリー ト製の落体を用い、斜入射実験装置を製作し、アスファル ト舗装において斜入射実験を行った。本研究で得られた結 果をまとめると、以下のとおりである。

- 落体速度に関する時刻歴波形より、いずれのケースも アスファルト舗装衝突後は線速度および水平方向速度 がほぼ同程度となり、落体運動は水平移動となる。
- 2) 落体エネルギーに関する時刻歴波形より,落体の移動 速度は最大貫入時刻以降においてはほぼ回転速度と同 程度となり,回転運動が支配的となる。

謝辞:

本研究を行うにあたり、土木研究所寒地土木研究所の荒木 恒也氏、山澤文雄氏をはじめとした寒地構造チームの皆さ まに多大なるご支援を戴いた.ここに記して謝意を表する.

参考文献

- 1) 日本道路協会: 落石対策便覧, 2000.6
- 2) 表真也,岡田慎哉,日下部祐基:落石シミュレーショ ンの定数設定法に関する検討,第53回北海道開発局 技術研究発表会,技45,2009.