ADCP を用いた流下河氷の氷厚推定

Estimation of thickness of river ice using ADCP

(国研)土木研究所寒地土木研究所	OE	員	横山 洋 (Hiroshi Yokoyama)
(国研)土木研究所寒地土木研究所	正	員	前田俊一 (Shuninchi Maeda)
(国研)土木研究所寒地土木研究所	正	員	矢部浩規 (Hiroki Yabe)

1. はじめに

積雪寒冷地である北海道において、コンクリート製の 河川構造物は凍害による劣化、損傷が数多く確認されて いる.さらに結氷河川においては、構造物への河氷の衝 突や摩擦が生じ、塩水遡上区間では塩分の影響も受け、 一層厳しい物理環境となる.凍害、塩害、河氷衝突によ る複合劣化の詳細なメカニズムには不明な点が多く残る のが現状である.したがって、このような厳しい環境下 での河川構造物に対する効果的、効率的な点検、診断手 法及び劣化予測手法等の確立は、積雪寒冷地における適 切な河川維持管理に不可欠である.

本研究で対象とする網走川下流特殊堤は,1979年から1992年にかけて網走川 KP0.9~KP5.0 にかけて加圧 コンクリート矢板を用いて築造された¹⁾. 当該区間は塩 水遡上区間であり、冬期はコンクリート矢板に対する河 氷の衝突や摩擦が頻繁に確認されている.このような厳 しい物理環境の下、矢板部の損傷や鉄筋露出が進み、複 合劣化が顕著に見られることから、現在補修工事が進め られている(**写真-1**参照).

特殊堤矢板の複合劣化の原因については、劣化が矢板 凸部で進行する一方、凹部では生じていないこと、また 矢板の干満帯で劣化が顕在化していることから、矢板部 の劣化進行は凍害、塩害が主要因ではなく、河氷の衝 突・接触が主要因であると推定されている¹⁾.また、網 走川下流部の橋梁の中には、ピアの干満帯の上流側部分 の欠損が認められるものがある一方で、同じピアの下流 側部分には欠損が見られないことから、河氷の衝突がコ ンクリートの劣化に大きな影響を与えていることが想像 できる(**写真-2**参照).さらに類似の事例として、汽 水湖であるサロマ湖岸のコンクリート鋼矢板の劣化でも、 一般的な腐食に加え、流氷による摩耗作用の可能性が指 摘されている²⁾.これらの事例から、護岸部のコンクリ ート鋼矢板の凍害劣化進行には、氷板衝突の衝撃・磨耗 の影響が大きいと推察される.

なお、河氷が構造物に衝突する際の衝撃力は、阿部ら によると構造物への河氷接近速度、河氷の平面積、河氷 厚が支配的なパラメータとされる³⁾.そこで著者らは、 網走川特殊堤のコンクリート矢板に対する河氷衝突によ る衝撃力評価に向け、氷板挙動に関する現地観測を実施 している.河氷の平面積及び移動速度は画像連続撮影等 により直接算定できる一方、完全結氷しない状況下での 河氷厚を直接かつ連続的に計測することは極めて困難で ある.結氷河川における間接的な氷厚連続計測として、 音響測深器⁴⁾、ADCP⁵⁾、SWIP⁶⁾が用いられているが、こ

写真-1 コンクリート矢板の劣化状況¹⁾

写真-2 ピア上流側部分の欠損(2017年7月31日)

れらの事例は完全結氷下での氷板厚推定であり,完全結 氷していない状況下で流下する河氷の氷板厚推定は行わ れていない.

本研究では、完全結氷していない状況下における移動 河氷の厚さを連続推定するため、ADCPによる河氷厚の 連続的な観測を試みるとともに、あらかじめ形状を調整 した氷を ADCP 上に流下させ、氷厚の推定値と実測値 を比較して精度を検証した.

2. 河氷厚推定試験の概要 (1)試験実施箇所及び日時

試験実施箇所は,図-1 に示す網走川 KP3.1 右岸の塩 水遡上区間である.写真-3 に試験実施箇所の河岸状況

平成29年度 土木学会北海道支部 論文報告集 第74号

図-1 網走川調査実施箇所(地理院地図に加筆)

写真-3 調査地点の特殊堤(2017年2月)

写真-4 調査地点を流下する河氷(2017年2月24日)

を示す. 河岸はコンクリート矢板による特殊堤である. また**写真-4** に示すとおり,冬期は流下する河氷が特殊 堤の矢板に衝突する状況が確認されている.

河氷厚推定試験は,融雪出水期以前である 2017 年 3 月6日に行った.試験開始は日最高水位に近い8時,終 了は日最低水位に近い17時であった.

なお本試験での河氷厚推定方法は(3)で,試験の条件 設定は(4)で後述する.

(2)現地計測項目

計測機器の現地設置概況を図-2に示す.

ADCP (RDI Workhorse sentinel 1200kHz) は河床から

上向きに固定して設置した. 河岸からは 1m 離して設置 している. ADCP の鉛直計測層厚は 0.25m, 計測データ は1秒平均値で出力している.

水位・水温計(応用地質 S&DL mini)は ADCP 近傍 の河岸近傍に単管を介して設置した.計測データは1分 平均値で出力している.図-3に水位及び水温計測結果 を示す.途中11時03分から14時05分まで水位の欠測 が生じているため、この間の河川水位は線形補間して氷 厚推定等の各解析を行っている.

赤外線照明搭載ビデオカメラ(Panasonic WV-SOW631LJ)は河岸に設置したポールから鉛直下向きに 設置し、特殊堤近傍の河氷移動状況を連続撮影した.

(3)ADCP による河氷厚推定手法

ADCP による河氷厚推定は,吉川らの方法を参考にした.吉川らは完全結氷した河川で,河床から上向きに ADCP を設置し,ボトムトラッキング機能を利用して河 氷底面の位置を把握し,実測値と比較して良好な結果を 得ている⁵⁾.本研究においてもボトムトラッキング機能 及び超音波反射強度の鉛直分布をもとに,河氷底部の位 置把握を試みた.

精度検証は、氷厚を変えて用意した氷を ADCP 上に 浮かべ、ADCP のボトムトラッキング機能により算出さ れる水面下の推定河氷厚と、水面下の実測河氷厚を比較 することにより行うこととし、ADCP による水面下の推 定河氷厚は、ADCP から得られた推定水深をもとに、以 下のとおり算定した。

$$d_{est} = H_s - z_a - h_{est} \tag{1}$$

ここで d_{est} : 水面下の推定河氷厚, h_{est} : ADCP ボトムト ラックから得られる水深, H_s : 自記水位計で計測した水 位, z_a : ADCP のビーム発射部の標高(EL-1.64m)であ る. なお, ADCP による推定水深は, ADCP の発射ビー ム角(20°) ならびに ADCP 設置状況による傾き(コ ンパスによる値)を考慮して補正している. ADCP の発 射ビームは4本あるが, ビームによるトラッキング値の 中には河氷底面を捉えていないものも見られた. そこで, 推定水深は河氷底面を有効に把握しているビームでのボ トムトラッキング値を用いた. また、ADCP 上に氷板が 位置している時間帯は, ビデオカメラによる撮影画像を もとに, 解析時に判別している.

(4)試験の条件設定

試験に用いる氷は網走市の水道水を凍らせたものを購入し、現場搬入前に氷厚を 10cm、20cm、30cm、45cm の4 種類に整形した.氷は ADCP 計測地点の上流約 10m の河岸から河道内に搬入し、船上から作業員がポール等で ADCP まで誘導して移動させた.氷板を河道 内に浮かべて試験を実施している間にも氷が解けて氷厚 が変化することから、試験中に適宜水面上及び水面下の 河氷厚を実測している.精度検証のための氷厚の計測は 26 回行い、うち 15 回は氷板を ADCP 直上で船上の作業 員がポールで静止させた状態を保って計測(以下、「静止計測」と記す)し、残りの 11 回は ADCP 付近で氷板 を静止させずに移動させた状態で計測(以下、「移動計測」と記す)した.静止計測と移動計測は可能な限り交 互になるよう行っている.試験 1 回あたりの所要時間は 約 4~6 分であった.

3. 試験結果及び考察

ADCP による観測結果の一例を以下に示す.

図-4(a)は静止計測での観測結果例である. グラフ中 の氷厚 1~氷厚 4 は、4 本のビームのボトムトラッキン グによる氷厚値である. 黒の実線は実測の氷厚(このケ ースでは水面下の氷厚 24cm)である. いずれのビーム でも観測期間中、氷板厚が一定の値に増加している時間 が数 10 秒程度複数回出現している状況が確認できる. なおボトムトラッキングによる氷厚は、実測の氷厚に比 べて 10cm 程度大きく出ていることがわかる. グラフ中 の赤丸で囲んでいる時間は、ビデオ画像から ADCP 上 を氷板が通過した時間帯である. ADCP のボトムトラッ キングにより、現地での氷板通過時間帯が概ね計測でき ていると言える.

図-4(b)は移動計測での観測結果例である.このケー

スでは、実測氷厚(このケースでは水面下の氷厚 0.1m) と ADCP による推定氷厚の誤差が 0.2m 程度生じている. ただしビデオから判読した氷板通過観測時間と、ボトム トラッキングから得られる氷板厚変化の時間帯が概ね一 致していることから、氷板通過時刻については ADCP により概ね再現できていると言える.

続いて各ケースでの水面下の実測氷板厚と ADCP に よる水面下の推定氷板厚を比較する. 図-5 は静止観測 及び移動観測での実測氷板厚と推定氷板厚の誤差及びヒ ストグラムを示している.推定氷厚保は実測氷厚に対し 概ね 0.1~0.2m 程度大きくなっており,氷板厚や観測手 法(静止,移動)によっても傾向に違いがない.この原 因については,今後より詳細に検討を進める予定である.

(a) 実測氷厚と ADCP による推定氷厚

(b) 推定氷厚の誤差ヒストグラム 図-5 実測氷厚と ADCP による推定氷厚の誤差

4. まとめ

ADCP による河氷厚及び河氷通過時間帯の推定を行った.また,ADCP 上での氷の静止観測及び移動観測を比較し,観測値の傾向に違いが出るのかを検証した.本研究で得られた結果を以下に示す.

(1)河氷厚については,静止観測及び移動観測で誤差の 傾向の違いは見られなかった.

(2)ADCP ボトムトラッキングにより,氷板が ADCP 上 に静止または通過する時間帯は概ね再現できている.

今後は、氷板厚の誤差の原因についてより詳細に検討 を進めるとともに、氷板通過時のボトムトラッキングの 反応についても検討を進める予定である.

謝辞

本研究の実施に当たり、北海道開発局網走開発建設部 には現地データ提供のほか、現地調査で多大なご協力を いただいた. 北見工業大学吉川助教には ADCP を用い た河氷観測実施及び結果解析において多くの有益な助言 をいただいた. その他現地調査実施に当たり協力をいた だいた皆様にここに記して謝意を表する.

参考文献

- 1)滝口真澄,大田見定,澤田公男:網走川下流部特殊堤 に生じた変状の要因分析と対策について,第56回 (平成26年度)北海道開発技術研究発表会,2015
- 2)河合孝治,牧田佳巳,木岡信治,寺島貴志,竹内貴 弘:鋼矢板護岸に作用する流氷の接触圧力に関する現 地計測,海洋開発論文集,第26巻,2010
- 阿部孝章,吉川泰弘,平井康幸:結氷時河川津波に よる漂流氷板の衝突力評価に関する研究,河川技術論 文集,2012
- 4)吉川泰弘,渡邊康玄,白井博彰:天塩川における雪面 高と氷底面高の連続測定,第24回寒地技術シンポジ ウム論文集,pp210-215,2008
- 5)吉川泰弘,渡邊康玄,早川博,清治真人:氷板下にお ける晶氷厚の連続測定,水工学論文集,第 53 巻, pp.1027-1032
- 6)橋場雅弘,吉川泰弘,渡邊康玄:結氷河川における
 SWIP を用いた河氷の晶氷厚の測定,河川技術論文集
 第12巻,pp.265-270,2010