# 気象擾乱により恒流場に誘発される密度振動の特徴

Characterisation of the wind-induced density fluctuation in a residual flow field

北海道大学工学部 ○学生員 足立 天翔 (Amato Adachi) 北海道大学大学院工学研究院 正会員 猿渡亜由未 (Ayumi Saruwatari)

# 1. はじめに

対馬暖流の支流である津軽暖流と親潮の二つの海流の 影響を受ける津軽海峡周辺海域では豊富な水産資源が形 成される為、本海域では古くから漁業が活発に行われて きた. またその中央部が公海と設定された国際海峡であ る津軽海峡は、コンテナ船だけでも年間 2000 隻以上の 航行があると言われており, 海上交通においても重要な 海域となっている. 更に津軽海峡東西に位置する幅約20 km の二つの狭窄部ではピーク流速が 2 ms-1 程度に達す るなど、豊富な海洋再生エネルギーも賦存している.本 海峡に面する函館市では近年このエネルギーを利用して, 潮流,海流発電を実施する計画が推進されている. 津軽海峡内は中央部が最大水深約 270 m の比較的深い 渓谷状地形となっており, それに加え複数の海盆や海釜 などが点在する複雑な海底地形が形成されている.(図-1 参照). 本海峡周辺において密度成層期には海底の起伏 により誘発される内部波が海流,潮流中の乱れ場や生物 生息環境などに影響を与えていることが報告されている 1). また強風イベント時には、気象擾乱により表層で発 達した慣性振動の内部波が水平, 鉛直方向に伝播, 反射 を繰り返し、より複雑な流れ場が形成されうることも指



摘されている<sup>2)</sup>. 共著者ら<sup>3</sup>は津軽海峡東狭窄部にお いて実施した現地流況観測により, 夏季の成層期にのみ 潮流, 海流場に顕著に乱れが増大することを確認してい る. また共著者ら<sup>4)</sup>が行った流れ場の三次元数値解析を 通して,海峡内の急峻な地形上において,日周期及び半 日周期の潮流振動や強風イベントなどがトリガーとなっ て発達する内部振動を再現すると共に,地形に依存した 発達, 伝播, 多重反射などの現象が生じることが明らか となった. ただし本海峡はそれぞれ特徴の異なる日本海 及び太平洋を接続する水域となっているのに加え, その 流れ場には日本海側から流入する津軽暖流と 24 時間周 期が卓越する潮流とが共存しており,本海域で発生する 内部振動の特徴を理解する為にはより詳細な研究が必要 である.

本研究では、恒流により津軽海峡に発達する内部振動 の特徴について明らかにすることを目的とする.三次元 数値流れモデルによる数値実験を通して、潮汐の影響を 無視した場合に気象擾乱により誘発される内部振動の基 本的な特徴について調査するものである.

# 2. 計算方法

# 2.1 三次元流れモデル

非静水圧三次元流れモデルである MIT general circulation model (MITgcm;Marshall et al. 1997<sup>5)6</sup>)を用いて 津軽海峡周辺海域における流速,塩分,水温場の数値計 算を行った.このモデルでは次式で表される運動方程式, 質量保存則,状態方程式,トレーサー(ポテンシャル水 温,塩分)の輸送方程式に基き,流速,圧力,水温,塩 分を計算する.

$$\frac{\mathrm{D}\mathbf{u}_{h}}{\mathrm{D}t} = -\frac{1}{\rho}\nabla_{h}p + (2\boldsymbol{\varOmega} \times \mathbf{u})_{h} + F_{h}$$
(1)

$$\frac{\mathrm{D}w}{\mathrm{D}t} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + (2\boldsymbol{\Omega} \times \mathbf{u})_{v} + \boldsymbol{F}_{v}$$
(2)

$$\frac{1}{\rho} \frac{\mathrm{D}\rho}{\mathrm{D}t} + \boldsymbol{\nabla} \cdot \mathbf{u} = 0 \tag{3}$$

$$\rho = \rho_0 [1 - \alpha (T - T_0) + \beta (S - S_0)]$$
(4)

$$\frac{\mathrm{D}\theta}{\mathrm{D}t} = \nabla \cdot (\kappa K \nabla \theta) + F_{\theta} \tag{5}$$

$$\frac{\mathrm{D}S}{\mathrm{D}t} = \boldsymbol{\nabla} \cdot (\kappa K \nabla S) + \boldsymbol{F}_S \tag{6}$$

ここで **u** = (**u**<sub>h</sub>, w) = (u, v, w) は水平, 鉛直方向流速,

p は圧力,  $\rho$  は密度,  $\theta$  はポテンシャル水温, S は塩分 である. (1)(2) 式の右辺第1項は圧力勾配, 第2項はコ リオリ力,  $F_h$ ,  $F_v$ は水平, 鉛直成分のその他(粘性, 拡散,風応力,底面側面摩擦など)の外力及びメトリッ ク項を表す. (5)(6) 式の右辺における  $\kappa$  は等密度線方向 への温度拡散係数, Kは水平, 鉛直方向から等密度線と それに直交する方向への座標変換テンソルである.本研 究では水面の境界条件として海水面温度 SST と海水面塩 分 SSS を与えているがを与えているが $F_{\theta}$ ,  $F_s$ はそれぞ れ SST, SSS が境界条件を満足するようにモデル内で計 算される. 非静水圧力は(1)(2) 式から導かれる次式の 圧力に関するポアソン方程式を解くことにより求める.

$$\nabla^2 \phi_{nh} = \nabla \cdot \boldsymbol{G}_{\nu} - (\nabla_h^2 \phi_s + \nabla^2 \phi_{h\nu d}) \tag{7}$$

ここで $\phi_{nh}$ ,  $\phi_{hyd}$ ,  $\phi_{s}$ はそれぞれ非静水圧,静水圧, 水 位上昇による静水圧変化である.  $G_v$ は運動方程式の圧 力勾配以外の外力項をまとめたものである.

## 2.2 入力データ

海洋研究開発機構による再解析データである FRA-JCOPE2 (Miyazawa et al. 2009<sup>7</sup>) により1日毎に提供され る水温,塩分,及び海流流速に基き初期条件,側方境 界条件ならびに海水面温度,塩分 (SST, SSS)の境界条 件を与えた.また,気象庁55年長期再解析データであ るJRA-55 (解像度 1.25°,時間間隔3時間)に基き10m 上空風速,海面更正気圧を入力した.海底地形は英国 海洋データセンターが提供する GEBCO\_2014(解像度 30″)に基き作成した.

#### 2.3 計算条件

本計算では二段階のネスティング計算を行った. 第1 領域,第2領域での計算条件を表-1に,その水深分布を 図-1 に示す. 鉛直方向グリッド幅は水深が深くなるに つれて増大させ,表層で2.0m,最下層で366.7mとした. 計算期間は成層期である夏季に設定し,2016年8月26 日 12:00 (UTC)から2016年9月2日12:00 (UTC)とし

### 表-1 計算領域の条件

|                               | 第1領域                   | 第2領域                   |
|-------------------------------|------------------------|------------------------|
| 範囲                            | E125°-150°<br>N28°-47° | E136°-146°<br>N38°-44° |
| 水平解像度<br>(lon×lat)            | 4' ×4'                 | 1.5' ×1.5'             |
| 鉛直解像度<br>グリッド数<br>(lon×lat×z) | 375×255×100            | 400×240×100            |
| 計算時間刻<br>み                    | 60 s                   | 30 s                   |



図-2 (E138°, N41.5°)における FRA-JCOPE2 に基き作成した (a)海面更正気圧, (b)10m 上空風速, (c)風向の時間変化. 横軸 は計算開始時刻 (2016年8月26日12:00)を0[hr]としたと きの時間経過.

た. また,対象ケースとして非成層期である冬季の流れ 場についても計算を行った(2015年2月26日00:00から 2015年3月10日00:00).計算時間刻みは第1領域で60 秒,第2領域で30秒に設定し計算を行った.また,各 計算期間において計算開始時刻からの経過時間をtと定 義する.

両計算期間中には津軽海峡周辺において熱帯低気圧及 び温帯低気圧に伴う強風イベントが含まれている.図-2 は夏季,冬季の両計算期間中のE138°,N41.5°地点にお ける海面気圧,10m上空風速,風向の時間変化を表す. 夏季では計算開始時刻より約100時間後,気圧が最小 (989.75 hPa),10m上空風速が最大(22.6 m/s<sup>2</sup>)となってお りこの時刻に津軽海峡周辺に低気圧が最接近した.風向 は低気圧通過前がE,通過後はSEが卓越した.同様に冬 季では約160時間後,気圧が最小(980.80 hPa),10 m上 空風速が最大(22.2 m/s<sup>2</sup>)となり,この時刻に低気圧が最 接近し風向は低気圧通過前がE,通過後はNが卓越した.

### 2.4 計算モデルの検証

米国海洋大気庁 NOAA が衛星, 船舶, ブイ観測データ に基く 1/4°解像度の再解析データとして提供する Optimum Interpolation Sea Surface Temperature (OISST) に よる夏季(2016年8月28日から9月3日の一週間平均) のSST 分布と,本研究で行った計算による対応した期間 (2016年8月26日から9月1日)のSST 分布を比較し た(図-2).本研究の計算結果は概ね OISST と同じ特徴を 示しており,より高解像度のSST 分布が計算されている. 同一地点における OISST と本計算結果との関係を表し たのが図-3 であるが,両者の相関係数は 0.9566 と高い値 を示した.



図-3 2016 年夏季の平均 SST 分布. (a) 米国海洋大気庁の OISST. (b)本研究の計算結果



図-4 本研究の計算結果により得られた SST と OISST の関係. 横軸は OISST, 縦軸は本計算結果を表す.

# 3. 計算結果

本計算における低気圧が津軽海峡を通過する前(t<40 [hr])までの第1領域表層の流速分布平均を図-4に示す. 黒潮が南から東に流れていき,津軽海峡に対馬暖流と親 潮の支流が流れ込む様子が確認できる.本計算の結果は 概ね日本周辺の流速分布を捉えている.

図-6に示されるように、北海道内浦湾の湾口を原点として南東方向にL軸を定義し、L軸断面における流速、 水温、塩分濃度、密度プロファイルの変化を調べた。図 -7(a)は夏季期間の軸Lに沿った z=-40 [m]における密度 の時間変化を示す.本水深は津軽海峡周辺海域における 夏季計算期間中の平均密度躍層深に相当する.計算開始 から40時間後までは結果が不安定であった為、助走計 算期間として解析対象から外した.40時間以降は安定 した為、それ以降について議論する.安定した期間の



図-4 t<40 [hr]における第1領域表層での流速ベクトルと流 速の絶対値の平均値.



図-6 軸 S の定義. 100km おきに+印をつけている. (E141°, N42.15°)を0[km]として軸Lに沿った座標をsと定義 する

後, t=100 [hr]で急激に密度が低下する. この時刻は前述 の通り低気圧が本領域に最接近した時刻と重なっている. また,図-8(a)は s=100 [km]地点における平均躍層深密度 の時間変化をプロットしたものであり、この図からも同 時刻で密度が急減少することが確認された. さらに、低 下してからは周期的に海水密度が振動した. 密度が急激 に低下したのは低気圧の接近に伴い鉛直混合が誘発され, 下層の重い水塊が上層に輸送された為であると考えられ る. それと共に内部振動が誘発される為, 低気圧通過 後に値の振動が生じた.紙面の都合により図の掲載は割 愛するが、密度の他に流速、水温、塩分濃度全てにおい て低気圧通後に値の振動が見られた. 同一地点における 冬季計算期間中の密度の時間変化を図-7(b),図-8(b)に示 す. 冬季における低気圧通過時刻は計算開始時刻より 160時間後であるが、図-7(b)からは大きな密度変化を確 認することができなかった.また、図-8(b)より低気圧通 過後(t>160[hr])に緩やかな密度低下が見られるが,夏 季に確認できたような顕著な密度の低下とその後の振動 は見られなかった. 密度の他に流速, 水温, 塩分濃度に おいても低気圧通過後の値の振動は確認されなかった. 夏季で見られた値の振動が冬季では見られなかったのは, 冬季の密度躍層は吹送流発達領域よりもずっと深い場所 にある為、内部振動が生じず水温や塩分の輸送が起きな かったからであると考えられる. また, 密度の振動周



図-7 図-6 に示される軸における, z=-40 [m]での密度の時間 変化. (a) 夏季 (b) 冬季



図-8 図-7 に示される軸における, s=100 [km], z=-40 [m]で の時間変化. (a) 夏季 (b) 冬季

期は約 18[hr]程度と本領域の慣性振動周期と一致する可 能性がある.これについては更なる検討が必要である. 生じず水温や塩分の輸送が起きなかったからであると考 えられる.また,密度の振動周期は約 18[hr]程度と本 領域の慣性振動周期と一致する可能性がある.これにつ いては更なる検討が必要である.

### 4. 結論

本研究では、三次元流れモデルを用いて津軽海峡周辺 海域の密度、塩分、流速場、水温の数値計算した.計算期 間は低気圧が本海域に接近した夏季と冬季の二ケースを 設定し、夏季では低気圧通過後、内浦湾とその周辺にお いて密度、塩分、流速場、水温の値の振動が確認された.

参考文献

- 金成誠一,小賀百樹,竹内謙介,辻正明,北海道余市 氏沿岸の近慣性内部波,北海道大学地球物理学研究 報告, Vol. 49, pp. 369-379, 1987.
- 大田紗生,磯田豊,吉村志穂,荘司堅也,有田駿,河 野航平,方暁蓉,小林直人,津軽海峡内の浅瀬地形 状で励起される内部潮汐波.海と空,Vol.90,No.3 pp. 63-84,2015.
- 3)本間翔希,宮武誠,猿渡亜由未,広田知也,津軽海峡の潮流・海流発電に向けた流京都エネルギー賦存量の四季的変動特性.土木学会論文集 B2(海岸工学),

Vol. 71, No. 2, pp. I\_555-I\_1560, 2015.

- 本間翔希, 猿渡亜由未, 宮武誠, 津軽海峡における 三次元密度構造の特徴化. 土木学会論文集 B2(海岸 工学), Vol. 73, No. 2, pp. I\_67-I\_72, 2017.
- Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophysical Res. 102(C3), pp 5753-5766, doi:10.1029/96JC02775
- Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophysical Res. 102(C3), pp 5733-5752, doi:10.1029/96JC02776
- Miyazawa, Y., R. Zhang, X. Guo, H. Tamura, D. Ambe, J.-S. Lee, A. Okuno, H. Yoshinari, T. Setou, and K. Komatsu, 2009: Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis, J. Oceanogr. 65, 737-756.