管水路内における気液二相流の線形安定解析

Linear stability analysis of air-water flow in a pipeline

北海道大学工学部環境社会工学科	○学生員	谷川徹(Toru Tanigawa)
北海道大学大学院工学研究院助教	正会員	Adriano Coutinho de Lima
北海道大学大学院工学研究院教授	正会員	泉典洋(Norihiro Izumi)

1. はじめに

豪雨下の下水道では、ポンプの排水が十分になされず下 水道管内の流れの遮断,空気圧の上昇が発生し流体が逆流 する.この現象は水撃(ウォーターハンマー)と呼ばれ、流 体,主に水の逆流によって水道管自体への損傷やマンホー ルの噴出といった二次災害が起こる原因となる.

管水路内の極端な圧力上昇は,跳水の急速な発生によっ て起こると考えられる.この際,管水路上端に達した跳水を 水柱(water column)と呼ぶ.Valentin(1981)によると,水柱 と水柱との間に閉じ込められた空気の圧縮と膨張により, 流体の逆流が加速され高周波の過渡現象が引き起こされる ことが観測されている.

水撃が発生するメカニズムを説明するためPriessman's Slot Method, Shock-Fitting Approach, Rigid Water Column Approach¹⁾などが提案されてきた.しかし,過分な圧力を 受けることで,どのように重力波から圧力波へ遷移するか の詳細な過程は未解明な部分が多い.そこで,本研究では 既に明らかとされている開水路における層流の安定性解析 のモデル²⁾を基に,管水路における気液二相流に対して線 形安定解析を行うことで,従来のモデルの一般化を図るこ とを目的とする.また,管水路内での層流が形成する界面 波の発生メカニズムを理論的に明らかにする.実際に居住 地環境での下水道管内で水撃が発生する場合,水の流れは 乱流であると推測されるが,今回は簡単のため水の流れは 層流として解析した.

2. 定式化

2.1. 支配方程式

液相の水深を1とし、2次元の管水路内の液相 ($0 \le y \le 1$) の流れをNavier-Stokes方程式と連続式により以下のように 表す.

$$\frac{\partial \vec{U}_w}{\partial t} + (\vec{U}_w \cdot \nabla) \vec{U}_w = -\frac{1}{\rho_N} \nabla p_w + \frac{\mu_N}{\rho_N Re} \nabla^2 \vec{U}_w + \frac{1}{\vec{S}} \frac{12(-1+d+\mu_N)}{Re(-4+4d+\mu_N)}$$
(1)

$$\nabla \cdot \vec{U}_w = 0 \tag{2}$$

ここで, tは時間, xおよびyはそれぞれ流れ方向および水深方 向の座標, \vec{U}_w (= (u_w , v_w))は水の流速ベクトルを表す. ∇ = ($\partial/\partial x$, $\partial/\partial y$), $\nabla^2 = \nabla \cdot \nabla$, $\vec{S} = (1, -S)$ でありSは底面勾 配, dは管水路の代表高さ, p_w は水にかかる圧力, ρ_N および μ_N はそれぞれ空気の密度および粘性係数を表す.

また,気相 ($1 \le y \le d$) では運動方程式と連続式は次のよう に表される.

$$\frac{\partial \vec{U}_a}{\partial t} + (\vec{U}_a \cdot \nabla) \vec{U}_a = -\frac{\nabla p_a}{\rho_N} + \frac{\mu_N}{\rho_N Re} \nabla^2 \vec{U}_a \quad (3)$$

$$\nabla \cdot \vec{U}_a = 0 \tag{4}$$

ここで, $\vec{U}_a = ((u_a, v_a))$ は空気の流速ベクトルを表し, p_a は 空気圧を表す. 空気圧 p_a について, 跳水の発生する地点の 圧力水頭をz, 管水路のx方向の長さをlとして次のような式 で表す.

$$-\frac{z}{l} + \frac{\partial p_a}{\partial x} = 0 \tag{5}$$

- 図 1 無次元化後の管水路内の気液二相流の概念図 水面の底面からの高さが1となるように無次元化し ている.
 - S:底面勾配
 d:管水路の代表高さ

 x:流れ方向の座標
 y:水深方向の座標

 u:流速のx方向成分
 v:流速のy方向成分

また、上式は既に次のような無次元化が行われている.

$$(\tilde{u}_a, \tilde{v}_a, \tilde{u}_w, \tilde{v}_w) = \tilde{u}_f(u_a, v_a, u_w, v_w)$$
(6)

$$(\tilde{x}, \tilde{y}, l, d, h_0) = h_0(x, y, l, d, 1)$$
 (7)

$$\tilde{t} = \frac{n_0}{\tilde{u}_f} t \tag{8}$$

$$(\tilde{p}_a, \tilde{p}_w) = \tilde{\rho}_w \tilde{u}_f^2(p_a, p_w) \tag{9}$$

$$(\tilde{\rho}_a, \tilde{\rho}_w) = \tilde{\rho}_w(\rho_N, 1) \tag{10}$$

$$(\mu_a, \mu_w) = \mu_w(\mu_N, 1).$$
 (11)

ここで \tilde{h}_0 および \tilde{u}_{w_0} はそれぞれ基準等流状態での水深およ び水のx方向の流速であり, 平均流速 \tilde{u}_f は次のように表さ れる.

$$\tilde{u}_f = \frac{1}{\tilde{h}_0} \int_0^{\tilde{h}_0} \tilde{u}_{w0} \, d\tilde{y}$$
(12)

また、*Re*はReynolds数であり次式で表される.

$$Re = \frac{\tilde{u}_f \tilde{h}_0 \tilde{\rho}_w}{\tilde{\mu}_w} \tag{13}$$

2.2. 境界条件

管水路上端 (y = d)の境界条件は

$$u_a(x,d,t) = 0 \tag{14}$$

$$v_a(x,d,t) = 0 \tag{15}$$

次に管水路下端 (y = 0) において, 底面に対する接線方向 および法線方向の流速成分はどちらもゼロとなり, 以下の 式が成り立つ.

$$u_w(x, 0, t) = 0 \tag{16}$$

$$v_w(x, 0, t) = 0 \tag{17}$$

ならびに気相-液相界面(y = 1)における運動学的境界条 件は次式で表される.

$$\frac{\partial h}{\partial t} + u_w \frac{\partial h}{\partial x} = v_w \text{ at } y = 1$$
(18)

これに加え自由表面に働くせん断力が十分小さいと仮定す ると,水面では接線方向および法線方向の応力がゼロとな り,次の式が成り立つ.

$$\vec{U}_a \cdot \vec{\mathbf{e}}_{ts} - \vec{U}_w \cdot \vec{\mathbf{e}}_{ts} = 0 \text{ at } y = 1 \quad (19)$$

$$\vec{U}_a \cdot \vec{\mathbf{e}}_{\rm ns} - \vec{U}_w \cdot \vec{\mathbf{e}}_{\rm ns} = 0 \text{ at } y = 1$$
 (20)

$$\vec{\mathbf{e}}_{ts} \cdot \vec{T}_a \cdot \vec{\mathbf{e}}_{ns} - \vec{\mathbf{e}}_{ts} \cdot \vec{T}_w \cdot \vec{\mathbf{e}}_{ns} = 0 \text{ at } y = 1 \quad (21)$$

$$\vec{\mathbf{e}}_{\rm ns} \cdot \vec{T}_a \cdot \vec{\mathbf{e}}_{\rm ns} - \vec{\mathbf{e}}_{\rm ns} \cdot \vec{T}_w \cdot \vec{\mathbf{e}}_{\rm ns} = 0 \text{ at } y = 1 \quad (22)$$

ここで, \vec{e}_{ts} , \vec{e}_{ns} はそれぞれ気相-液相界面に対する法線および接線方向の単位ベクトル, \vec{T} は応力テンソルであり, それぞれ次式で表される.

$$\vec{\mathbf{e}}_{ts} = \frac{\left(1, \frac{\partial h(x,t)}{\partial x}\right)}{\left[1 + \left(\frac{\partial h(x,t)}{\partial \tilde{x}}\right)^2\right]^{1/2}}$$
(23)

$$\vec{\mathbf{e}}_{\rm ns} = \frac{\left(-\frac{\partial h(x,t)}{\partial x},1\right)}{\left[1+\left(\frac{\partial h(x,t)}{\partial x}\right)^2\right]^{1/2}}$$
(24)

$$\vec{T}_{i} = \begin{bmatrix} -p_{i} + 2\mu_{i}\frac{\partial u_{i}}{\partial x} & \mu_{i}\left(\frac{\partial u_{i}}{\partial y} + \frac{\partial v_{i}}{\partial x}\right) \\ \mu_{i}\left(\frac{\partial u_{i}}{\partial y} + \frac{\partial v_{i}}{\partial x}\right) & -p_{i} + 2\mu_{i}\frac{\partial v_{i}}{\partial y} \end{bmatrix}$$
(25)

添え字*i*は液相(*i* = w)または気相(*i* = a)を表す. 空気流れの上流,下流での圧力の条件は次のようになる.

$$p_a(0,t) = 0$$
 (26)

$$p_a(l,t) = z \tag{27}$$

ただし今回は,外的要因による大気に対する圧力付加は無 視するので式(27)にz=0を代入して解析する.

3. 漸近展開

気相-液相界面における波の発達について解析するため 次の形で表される漸近展開を導入し, normal mode analysis を行う.

$$[\psi_{a}.\psi_{w}, p_{a}, p_{w}, h] = [\psi_{a0}, \psi_{w0}, p_{a0}, p_{w0}, 1] + A[\psi_{a0}, \psi_{w0}, p_{a0}, p_{w0}, h_{1}]e^{i(kx - \omega t)}$$
(28)

ここでA, kおよび ω はそれぞれ擾乱の振幅, 波数および角 周波数である.時間モードの線形安定解析では角周波数 ω を複素数と仮定する.また, 振幅Aが微小であるとき線形 安定解析では A^2 より高次の項を無視する.流関数 ψ_a , ψ_w は次のように定義される.

$$(u_a, v_a, u_w, v_w) = \left(\frac{\partial \psi_a}{\partial y}, -\frac{\partial \psi_a}{\partial x}, \frac{\partial \psi_w}{\partial y}, -\frac{\partial \psi_w}{\partial x}\right)$$
(29)

基本状態で, 無次元化された支配方程式(1)-(5)を境界条件 (14)-(22)の下で解くと次の解を得る.

$$\psi_{a0} = -\frac{3y(y-2d)}{4d+\mu_N-4} \tag{30}$$

$$\psi_{w0} = -\frac{y^2 \left((2y-3)\mu_N + 2(d-1)(y-3)\right)}{4d + \mu_N - 4} \quad (31)$$

$$p_{a0} = 0 (32)$$

$$p_{w0} = -\frac{12(y-1)(d+\mu_N-1)}{SRe(4d+\mu_N-4)}$$
(33)

4. 線形安定解析

気相において*x*, *y*方向それぞれの運動方程式から圧力項 を消去すると, *O*(*A*)において以下の方程式を得る.

$$\mathcal{P}(y)\psi_{a1}(y) + \mathcal{Q}(y)\psi_{a1}''(y) + \mathcal{R}(y)\psi_{a1}^{(4)}(y) = 0 \qquad (34)$$

液相において,同様に以下の方程式を得る.

$$S(y)\psi_{w1}(y) + \mathcal{T}(y)\psi_{w1}''(y) + \mathcal{U}(y)\psi_{w1}^{(4)}(y) = 0$$
 (35)

ここで, *P*, *Q*, *R*, *S*, *T*およびUは線形微分演算子であり, スペースの関係から具体的な形については省略する. *O*(*A*)における境界条件として次式が得られる.

$$\psi'_{a1}(d) = 0$$
 (36)

$$\psi_{a1}(d) = 0 \qquad (37)$$

$$\psi'_{w1}(0) = 0 \qquad (38)$$

$$\psi_{w1}(0) = 0$$
 (39)

$$h_1\left(\frac{6(d-1)k}{4d+\mu_N-4}-\omega\right)+k\psi_{w1}(1)=0$$
 (40)

$$\psi'_{a1}(1) + \frac{6h_1(\mu_N - 1)}{4d + \mu_N - 4} - \psi'_{w1}(1) = 0 \qquad (41)$$

$$\psi_{w1}(1) - \psi_{a1}(1) = 0 \qquad (42)$$

$$k^{2}\psi_{a1}(1)\mu_{N} + \mu_{N}\psi_{a1}''(1) + \frac{12h_{1}(d + \mu_{N} - 1)}{4d + \mu_{N} - 4}$$

$$-k^{2}\psi_{w1}(1) - \psi_{w1}''(1) = 0 \qquad (43)$$

微分方程式系O(A)を数値的に解くため、Chebyshev多項式 を用いたスペクトル法を導入する.以上の数値計算の後,周 波数ωは次のような関数形で求められる.

$$\omega = \omega(k, Re, S) \tag{44}$$

ここで、複素角周波数ωの虚部Im[ω]が擾乱の成長率である.

5. 結果および考察

5.1. 管水路の高さdによる影響

図-2に解析から得られた $Im[\omega]$ のk-Re平面におけるコン タを示す. 管水路の高さが十分に大きく開水路の流れとし て扱える条件下である $d = 10^6$, 10^4 , 10^2 の安定領域と不 安定領域の境界面を示す中立線は一致している. これらの 中立線は既に得られている開水路の自由表面流の結果とも 一致しており, 今回のモデルの妥当性を示している. また, d = 10(図-2の破線部)に着目すると, 波数kが $1 \le k \le 7$ の 領域ではdが10より大きい場合には見られなかった不安定 領域の広がりが確認できた. 特にS=0.0001をみるとd = 10の時の不安定領域は, 他のdに比べて広がりが大きい. こ れは勾配が極端に小さくなると液相の重力波による不安定 性への寄与が小さくなり, 気相の流れの不安定性への寄与 が顕著に影響してくるためである.

5.2. *d* = 1.2の時

実際の水道管のスケールに合わせるためd = 1.2を用い て解析を行ったところ図-3に示すような安定性ダイアグラ ムが得られた.図-2と図-3の結果を比較すると,S = 0.1か つd = 1.2の条件で $10^2 \le Re \le 10^4$, $k \le 2$ の領域では、開水 路での安定性ダイアグラムでは見られない2つの不安定性 モードが現れている.また、図-2の小さいReynolds数のも とで不安定な領域が,d = 1.2の場合では安定である.さら に、波数k, Reynolds数がともに大きい領域(図の右上部) では小さな勾配でも新たな不安定領域が形成される.

平成29年度 土木学会北海道支部 論文報告集 第74号

図 - 2 各勾配Sについてのk-Re空間での摂動の増幅率 $Im[\omega] = 0$ の中立曲線. $d = 10^6$, $d = 10^4$ は実線, $d = 10^2$ は太線, d = 10は破線でそれぞれ示して いる.

6. 結論

本研究では、管水路内における気相-液相の層流流れの線 形安定解析を行い、開水路のモデルに比べ空気流れを考慮 した流れの様々な勾配における安定性ダイアグラムを得た. また、空気流れが存在することにより開水路では見られな かったモードおよび不安定性領域が確認できた.

参考文献

- James Li and Alex McCoquodale : Modeling Mixed Flow In Storm Sewers, *Journal Of Hydraulic Engineering*, November 1999.
- 泉 典洋, デ リマ アドリアーノ コーティニョ:自由表面 流の安定性再考, 土木学会論文, 2014.

図 - 3 *d* = 1.2における*k*-*Re*空間での摂動の増幅率