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1. Introduction 

  As the aging bridges have become an unavoidable problem, 

the study on bridge structural health monitoring is greatly 

necessary for the purpose of detecting potential structural 

damage and determining the current structural state. 

  The classical structural damage detection methodologies1-4) 

have the same identification logic which needs to define some 

damage indicators or thresholds artificially. Structural damages 

are indicated when some indicators emerge singular values. 

The process of damage detection shows forward logic 

relationship between monitoring data and damage information. 

Obviously, the forward logic methodologies require lots of 

handicraft low-level features, which may unable to capture 

more vital information of the structure. 

  With the rapid development of calculation capacity of 

computer hardware, deep learning5) shows its advantages 

dealing with capturing deep features for classification tasks. 

Machine learning based methods avoid the artificial feature 

extraction process, and link the input and output data end-to-

end by a computer-generated calculation model.  

  Under this circumstance, we attempt to apply deep learning 

method to automatically and efficiently extract the in-depth 

structural features and estimate the structural states. Thus, in 

this study identification of structural states is carried out only 

by utilizing a convolutional neural network (CNN)6 and raw 

vibration data of a simply supported steel girder bridge. 

 

2. Data generation 

2.1 Vibration experiment  

  In order to apply the machine learning methods to the bridge, 

vibration experiment was conducted to build a large size 

database. The 6.45m-long steel bridge was shown in Fig. 1. In 

total 15 accelerometers were installed on the upper flange to 

collect the vibration data. Sampling frequency is 10000 Hz. 

Local structural states (mass and stiffness) were changed by 

fixing additional element on the lower or upper flange of the 

bridge, as shown in Fig. 2 and 3. The additional element 1 

(5.11 kg) is a steel plate on the lower flange which was fixed 

by 2 clamps. The additional element 2 (3.21 kg) is an actuator 

which was installed on the upper flange fixed by magnet. Notes 

that the actuator was not used as exciter in this study. 

The experiment consists of 6 scenarios. Scenarios 1-4 were 

applied by additional element 1 in 4 different positions.  

 

Figure 1  Steel bridge 

 

Figure 2  Additional element 1 

 

Figure 3  Additional element 2 

 

Scenario 5 was applied by additional element 2. Scenario 6 is 

a structural state with no additional element. Vertical hammer 

impulse excitation was applied on 14 positions of the upper and 

lower flanges. The experimental layout is shown in Fig. 5. 

2.2 Database 

The database contains in total 8595 measurements of 0.6s-

long free damped vibration data which are divided into 6 

categories corresponding to the 6 experimental scenarios. Raw 

acceleration data is directly used without any filtering pre-

processing. Each measurement consists 90,000 acceleration 

data samples (15 channels×6000 samples). The detail 
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Figure 4  Experimental layout  

distribution information is shown in Table 1. One channel 

waveform of a measurement is shown as an example in Fig. 5. 

We adopt random selection of the data to give a more reliable 

result. For splitting the data, 80% of the dataset is chosen as 

train set, and the other 20% of the dataset is divided into test 

set. Note that there is no overlap between train set and test set. 

 

3. Methodology  

  In this study, a CNN is designed to classify the data 

corresponding to the 6 states of the bridge. In order to have a 

better comprehension of the performance or capacity of the 

CNN, a fully connected neural network (FCNN)7) is also 

designed to make a comparison with the CNN. 

3.1 Convolutional neural network  

  Typical CNN consists of input layer, convolutional layers, 

pooling layers, flatten layer, fully connected layers, and a 

softmax layer.  

  The algorithm of 1-D convolution is shown in Eq. 1. The 

detail calculation example was shown in Fig 6. The 

significance of convolution operation is to extract local features 

of the data. 

𝑓(𝑖) = ∑ 𝑆(𝑖 + 𝑛)𝐾(𝑛)
𝑣𝑘

𝑛=1
             (1) 

  Batch normalization8) operation is also conducted after 

convolution in this study. During training, for every batch of 

data, the algorithm calculates the mean and variance, then 

shifts and scales the origin data to zero-mean and one variance. 

The operation solved the internal covariate shift problem and 

increase the convergence rate.  

  1-D Max pooling is applied after batch normalization in this 

study. This operation picks out the maximum within its kernel 

size, step by step. Fig. 7 shows an example of the operation. It 

makes the neural network to detect more features and reduces 

the size of data which can improve the computational 

efficiency of the natural network. 

  Flatten layer is designed before fully connected layers. The 

purpose for flatten is to reshape the input matrix into a long  

vector which can be inputted into the fully connected layers. 

  Dropout operation9) is utilized after flatten operation. In brief, 

it inactivates some neurons during training and reactivates 

those neurons during test. The operation can increase the 

convergence rate.  

 

Table 1  Distribution of database 

 Amount   Amount 

Scenario 1 1279 Scenario 4 1286 

Scenario 2 1414 Scenario 5 1181 

Scenario 3 1362 Scenario 6 2073 

In total   8595 

 

Figure 5  Waveform of one channel of a sample 

 

 

Figure 6  Example of 1-D convolution 

 

 

Figure 7  Example of 1-D max pooling 

 

  Fully connected layers are the fundamental structure of 

neural network. The neurons in fully connected layer are linked 

with all the neurons in forward layer, and calculated by the 

basic equation as Eq. 2. In Eq.2, y means output, x means input, 

w means weight, b means bias, and f means activation function. 
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Weights and biases are trainable variables, and activation 

function is manually assigned.  

𝑦 = 𝑓(∑𝑢 × 𝑤 + 𝑏)               (2) 

  Relu function10) is chose as the activation function in this 

study, as shown in Eq. 3, Fig. 8. It solves the vanishing gradient 

problem, and adds the nonlinear attribute to the neural network. 

𝑦 = max⁡(0, 𝑢)                (3) 

  The softmax layer is arranged as the last layer to output the 

final result of the classification. The detail algorithm is shown 

in Eq. 4. The possibilities of all the prediction candidates are 

evaluated, and the candidate with highest possibility will be 

output as the final result. 

𝑦𝑖 =
exp⁡(𝑢𝑖)

∑ exp⁡(𝑢𝑖)
𝑛
𝑖=1

                (4) 

  The difference between the labels and neural network 

outputs will be evaluated by the loss function. The loss function 

in this study is cross entropy, as shown in Eq. 5. E means the 

loss, N means the number of training data, x means samples, y 

means the actual value (label), and a means the output of neural 

network (prediction).  

𝐸 = −
1

𝑁
∑ [𝑦ln𝑎 + (1 − 𝑦) ln(1 − 𝑎)]𝑥         (5) 

  After calculating the loss, an optimizer will be utilized to 

reduce the difference between the neural network outputs and 

the labels. This is the core process of training. 

3.2 Fully connected neural networks 

  FCNN are also designed to classify the data of 6 states of the 

bridge. The FCNN has obvious characteristics that all hidden 

layers in the network are fully connected layers, which is 

introduced in Section 3.1. 

  The detailed structure of neural network in this study is 

shown in Table 3. There are 3 fully connected hidden layers in 

the network.  

 

4. Results 

  In this paper, we utilized the 1-D conversion natural network 

to identify all the structural states. The batch size is set to 512. 

The dropout ratio is 0.25. The learning rate of Adam 

optimizer11) is set to 0.001. For the FCNN, the basic calculation 

modules are same to the CNN that, batch size:512, activation 

function: Relu; loss function: cross entropy; optimizer: Adam; 

and learning rate: 0.001. The detailed structures of CNN and 

FCNN is shown in Table 2 and 3. 

  The CNN and FCNN were designed by Python 3.5 in 

Ubuntu 16.4 OS environment, based on the Tensorflow12) 

framework and Keras API.  

  The FCNN method got the lower classification accuracy 

87.45% after training for 200 epochs. It means the FCNN could 

extract important vibration information of the bridges, but 

cannot achieve efficient computing in terms of the performance. 

  From Table 3, it can be found that the 5-layer FCNN has 

more than 7 million parameters to be trained. Comparing to the 

CNN (0.4 million parameters, shown in Table 2), the 

 

 

Figure 8  Relu activation function 

 

Table 3  Structure of the fully connected neural network  

Layer Output Shape Parameter 

Input Layer 90000×1 0 

Dense1 (Relu) 80×1 7,200,080 

Dense2 (Relu) 40×1 3240 

Dense3 (Relu) 20×1 1640 

Dense4(Softmax) 6 246 

Total parameters   7,205,206 

 

  

Figure 9  Accuracies of the classification  

 
Figure 10  Loss of CNN in every epoch 

 

 

Figure 11  Accuracy of CNN in every epoch 
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Table 2  Structure of the convolutional neural network  

Layer (type) Output Shape 
Kernel 

number 

Kernel 

size 
Stride Padding Activation Parameter 

Input Layer 90000×1 None None None None None 0 

Reshape 6000×15 None None None None None 0 

Conv1D 5991×5 5 10 1 Valid Relu 755 

Batch normalization  5991×5 None None None None None 20 

MaxPooling1D 1997×5 None 3 3 Valid None 0 

Flatten 9985 None None None None None 0 

Dropout (0.25) 9985 None None None None None 0 

Dense 40 None None None None Relu 399,440 

Dense 6 None None None None Softmax 246 

Total parameters        400,461 

 

Table 4  Confusion matrix and accuracy of all scenarios 

Count 
Predicted additional element location 

S1 S2 S3 S4 S5 S6 Total Accuracy 

Actual 

additional 

element  

location 

S1 1277 1 1 0 0 0 1279 99.84 %  

S2 0 1411 0 0 0 3 1414 99.79 % 

S3 1 1 1360 0 0 0 1362 99.85 % 

S4 3 0 1 1282 0 0 1286 99.69 % 

S5 0 0 0 0 1181 0 1181 100 % 

S6 0 0 0 0 0 2073 2073 100 % 

Total 1281 1413 1362 1282 1181 2076 8595 Overall: 99.87%  

 

calculation cost of FCNN is high, while the convergence speed 

is much slower than CNN. 

  The CNN got the better performance with 99.87% accuracy. 

The confusion matrix and accuracy in every category is shown 

in Table 4. There are only 11 errors comparing to the large 

number of database (11/8595). Figures 11 and 12 show the 

convergence speed of the CNN model, and it shows that the 

network can get a very high accuracy after training for only 5 

epochs. Compared to the performance obtained by FCNN, 

CNN achieves the higher accuracy and convergence of speed. 

 

5. Conclusions  

  Different bridge states are classified by a CNN and a FCNN 

in this study. CNN shows overwhelming superiority to FCNN 

method, considering on classification accuracy, convergence 

speed, calculation cost and efficiency. 

  High accuracy of states identification by CNN (99.87%, 

8584/8595) shows the feasibility of applying CNN method in 

structural health monitoring field. Future work will focus on 

identification of bridge states in multiple local stiffness 

changes and distinguishing the severity of different damages. 
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