白鳥大橋におけるハンガーロープの現状について

Hakucho-Ohashi Bridge - Inspecting the current deterioration state of the hanger ropes

(株)ドーコン構造部
 ○正員
 佐々木康史 (Yasushi Sasaki)
 北海道開発局室蘭開発建設部
 非会員
 島田武 (Takeshi Shimada)
 北海道開発局室蘭開発建設部
 非会員
 福田 孝志 (Takashi Fukuda)

1. はじめに

白鳥大橋は,日本 で唯一積雪寒冷地に 建設された長大吊橋 で中央径間 720m の 2 ヒンジ補剛吊橋で あり,1998 年に供 用開始した(写真-1). 過年度に実施され

写真-1: 白鳥大橋の全景

た点検にて多数のハンガーロープに塗膜割れと腐食が確認された.内部腐食によるロープの強度低下が懸念されたが,狭隘な定着構造のため非破壊検査による腐食量の 把握が難しく,加えて腐食によるロープの強度低下に関する既往研究事例も少ないことなど,健全性評価における課題を有していた.

今回,ハンガーロープの健全性評価に向けた技術的知 見を得るため,実橋からハンガーロープを抜き取り,各 種室内試験を実施したのでその結果を報告する.

なお,対象ロープは外観目視による腐食程度と施工性 に着目し,2格点(SW101,NE10)を選定した.

2. ハンガーロープの構造概要

本橋のハンガーロープは亜鉛メッキ鋼線を撚り合わせ た構造で、補剛桁内部で定着されており、1本のロープ を主ケーブルに鞍掛けした構造で、1格点あたり2本、 全体で444本設置されている.(写真-2,3、表-1、図-1)

写真-2:ハンガーロー

	-		

表-1:ハンガーロープ諸元			
ロープ種類 CFRC7+6×7+6×W(19)			
ロープ径	φ44 mm (φ48 mm:端部)		
使用本数	444 本(2本 / 格点、222 格点)		
最小切断荷重	1,293 kN (132 tf)		

図-1:ハンガーロープ構成図

3. 腐食状態と推定原因

ー般部の腐食は塗膜内部から滲み出た様相(写真-4)を 呈していたことから、塗膜内部に浸入した水分によるも のと考えられた.さらにソケットロ元部では、ロープ全 周に腐食が拡がっており(写真-5)、一般部より著しい腐 食状態であることも確認された.これは周囲を支圧板に 覆われ、水分や湿気が滞留し易い環境によるものと推察 される.

ハンガーロープの腐食は、断面欠損による強度低下に 繋がるが、外観点検ではロープ内部の腐食状態の把握は 困難である.したがって、ロープの健全性を適切に把握 するためには、内部の腐食状態のほか、それによる強度 低下への影響を確認する必要がある.

写真-4:一般部の腐食状況

写真-5:定着部の腐食状況

4. ハンガーロープの抜き取り

4.1 施工方法

ハンガーロープは支圧板を介し補剛桁に定着されてい る. 抜き取りに際し一時的に支圧板を取り外す必要があ ったため、桁内に反力架台を設置、センターホールジャ ッキにて下方への引張力を導入し、支圧板に作用してい る圧縮力を開放した(写真-6). ハンガーロープは 1 格点 あたり2本のロープで構成されるが、安全性に配慮し1 本ずつ交換した.施工は一般交通への影響を抑えるため 夜間に交通規制を行いながら実施した(写真-7).

写真-6 張力導入

4.2 張力変動

ハンガーロープを抜き取る際に、隣接格点に張力が再 配分されると予想された. そのため, 施工段階毎に張力 測定を実施し張力変動を記録した(表-2,3). 抜き取り時 には両隣の格点で 10~20%程度張力が増加したが、交 換完了後,復元することが確認された.

交換完了から数日経過した段階でも僅かな変動がある ことから、補剛桁やケーブルの振動等の影響により徐々 に張力バランスが復元されたものと考えている.

格点番号 SW100		SW101 交換対象	SW102	
÷ 10 ×		750.7	627.2	740.9
د	C授削	(1.00)	(1.00)	(1.00)
1 撤去	814.4	487.1	821.2	
	(1.08)	(0.78)	(1.11)	
▲ ● <	739.9	690.9	743.8	
	(0.99)	(1.10)	(1.00)	
0	2 撤去	836.9	522.3	error
2 +		(1.11)	(0.83)	()
▲ ● <	758.5	674.2	742.8	
	(1.01)	(1.07)	(1.00)	
0		765.4	634.1	746.8
2日後	(1.02)	(1.01)	(1.01)	

表-2 ロープ交換による張力変動(格点 SW101)

表-3 ロープ交換による張力変動(格点 NE10))
--------------------------	----

格点番号		NE9	NE10 交換対象	NE11	
交換前		761.5	671.3	697.8	
		(1.00)	(1.00)	(1.00)	
1 撤去	877.1	532.1	813.4		
	撤五	(1.15)	(0.79)	(1.17)	
▲ 日 再設置	807.5	676.2	740.9		
	(1.06)	(1.01)	(1.06)		
2 撤去	893.8	485.1	740.9		
	撤去	(1.17)	(0.72)	(1.06)	
▲ 目 再設置	市扒哭	811.4	640.9	743.8	
	(1.07)	(0.95)	(1.07)		

5. 室内試験

5.1 ストランドの解体による素線観察

抜き取ったロープを切断し、長さ 30mm 程度の試験 片を作成した後,素線単位に解体し,素線の腐食状態を 観察した. 試験片は一般部及び口元部から腐食状態の悪 い部分を採取した(写真-8). 腐食状態のものと酸洗浄し た鉄素地状態のものとで各々観察を行った.

写真-8 試験片の採取箇所

一般部の外周部に位置する素線は腐食生成物で覆われ ており鉄素地の断面減少も確認された(写真-9). 内側に 位置する素線は表面に腐食生成物が付着していたが酸洗 浄後の鉄素地には断面減少が認められなかった(写真-11). 同様に芯に位置する素線も健全であった(写真-13).一方, 口元部は、外周部(写真-10)から内部(写真-12)、芯(写真-14)に至るまで、腐食生成物が確認されるとともに、鉄 素地の断面減少が確認された.

5.2 断面観察

内部の腐食状態を確認するため,切断面を顕微鏡にて 観察した.外周表面に露出している箇所に明らかな断面 減少が確認され、特に口元部では著しい腐食が発生して いた.写真-15,16 に一般部及び口元部の外層ストランド の状態を示す(倍率×10 のマクロ観察).一方,内層スト ランドはマクロ観察では判読できず,倍率×400 のミク ロ観察を実施した.その結果,一般部は断面減少に至っ ていないが,亜鉛メッキ層が消失していることが判明し た(写真-17).口元部はメッキ層の消失とともに,芯素線 に僅かな断面減少が存在することも判明した(写真-18).

写真-15 一般部外層ストランドの腐食状

写真-16 ロ元部外層ストランドの腐食状

写真-17 一般部内層素線の腐食状態

写真-18 ロ元部芯素線の腐食状態

5.3 腐食量測定

腐食量算定は測定精度の高い「全磁束法による腐食量 測定」¹⁾を基本としたが、ロ元部の測定では金属ソケッ トによる測定値への影響が懸念された.そのため全磁束 法とともに重量法による測定を行い精度を確認した.

重量法による測定は長さ 40mm の試料片を腐食部か ら別途採取し実施した.一般部および口元部の腐食部か ら採取するほか,外観異常の認められなかった鞍掛部か ら試料を採取し初期値(健全値)とした.表-4 に示す とおり,僅かに誤差があるものの両者は同等であった. したがって,強度試験では全磁束法による測定値を腐食 量として採用した.

なお、全磁束法にて発生する磁束流はメッキ部を除い た鋼線部を流れるため、重量法ではメッキ部断面積を除 いた鋼線部断面積から算定した.また、口元から 10mm の位置では、切断作業が困難であったことから、35mm の位置で試料採取を行った.

		健全部	腐食部			
		(基準値)	一般部	口元部		
Ŧ	飼料採取位置 (ロ元からの距離)	mm		11,950	35	
里 量 法	鋼線部断面積	mm2	957.5	957.6	941.9	
	断面減少率	%	0	0	2	
全 磁	計測位置	mm		12,000	10	60
束 法	腐食率	%	0	0	3	2

表-4 腐食量の測定結果

5.4 強度試験

腐食量と強度低下の関係を把握するため、口元部の腐 食が激しいロープを対象に強度試験を実施した.各試験 体の腐食量と測定強度を表-5,図-3に示す.各試験体と も残存強度は設計荷重を超えており、これにより、現在 確認されている腐食状態では、ハンガーロープの安全性 は確保されているものと判断される.したがって、今後 はこのような腐食の進行を早期に抑制することで、健全 性を確保するべきであるものと考えられる.

破断荷重 腐食量 破断位置 試験体No. 外観状態 kΝ % 1,540 SW101(1) 0 健全 中間部分 SW101(3) 1,538 中間部分 0 健全 SW101(4) 1,529 ロ元部に腐食 口元部分 2 NE10(1) ロ元部に腐食 1,505 口元部分 4 NE10(2) 3 1,467 口元部分 ロ元部に腐食 NE10(4) ロ元部に腐食 1,538 中間部分 4(口元) 設計値 1,294

表-5 強度試験の結果

6. まとめ

6.1 試験結果

本試験により、下記のことが判明した.

(1)一般部の試験結果

- ・全体的に塗膜劣化が進行,表面腐食が多い.
- ・最外層はメッキ層の消失と断面減少が発生.
- ・内層の断面減少はないが局部にメッキ層消失を確認.
- ・ロープ全体での腐食は極めて僅かで引張破断強度への 影響は認められず.

(2)口元部の試験結果

- ・狭隘な湿潤環境下のため表面は著しく腐食.
- ・最外層はメッキ層消失と断面減少が進行.
- ・内層も腐食し、芯部にも僅かであるが断面減少を確認.
- ・全体での腐食量は最大4%であり、引張破断強度への 影響は認められず。

6.2 総合評価及び対策

本橋のハンガーロープは完成から 18 年が経過し,外 観には塗膜劣化や腐食が多数確認されている.しかしな がら,本試験の結果,腐食はロープ全断面積の数%程度

(最大 4%)と僅かな量であり、さらに引張破断強度への影響も認められないことから現状では健全と評価した. ただし、ロープの内側においてもメッキ層の消失や素

線の局部的な腐食が認められたことを踏まえると、今後 の腐食進行により健全性が低下することが危惧される.

ロープの交換は莫大な費用を要するため、腐食の進行 抑制を行い、現状を維持しつつ、長寿命化を図ることが 現実的な対策であると評価した.

7. おわりに

我が国における長大吊橋の維持管理は僅か 50 年程度 の実績であり、特に吊橋固有部材に対する点検や評価方 法等に関する技術的な知見,研究開発事例は全国的にも 数が少ないというのが実情である。

本報告が他の長大吊橋における適切な維持管理に貢献 出来れば幸いである。

謝辞

本試験の実施にあたり、釧路工業高等専門学校長 岸 徳光先生を始め、白鳥大橋維持管理計画検討委員の皆様 には、度重なるご指導を賜った.この場を借りて謝意を 表する.

参考文献

 吉田好孝,前田泰男,横沼庸助,若狭信明,守谷敏 之,吊橋ハンガーロープ(C.F.R.C)の全磁束法による 非破壊調査と強度試験,土木学会年次学術講演会講 演概要集,55-1A,p630-631,2000.