非破壊 CT-XRD 連成法を用いた 塩水作用を受けたセメント硬化体中の鋼材腐食観察

Observation of chloride-induced-corrision of steel wire in hardened cement paste using non-destructive integrated CT-XRD method

北海道大学大学院工学院	○学生員	若松和哉 (Kazuya Wakamatsu)
北海道大学大学院工学院	学生員	高橋駿人 (Hayato Takahashi)
北海道大学大学院工学研究院	正員	杉山隆文 (Takafumi Sugiyama)
北海道大学大学院工学院	非会員	菊池玲子 (Reiko kikuchi)

1. 研究背景·目的

鉄筋コンクリート構造物にとって、塩害による鋼材腐 食は耐久性に影響を及ぼす重大な問題である。その原因 は、海洋環境や凍結防止剤などに起因する塩化物イオン が鋼材まで浸透し、鋼材断面を著しく損傷すると同時に、 腐食生成物による体積膨張によりひび割れが発生するこ とにある。これまでにもコンクリート中の鉄筋腐食に関 して数々の報告がされているが、現象はコンクリート内 部で発生しているためこれらを直接的に観察した研究は 見当たらない。

そこで本研究では、マイクロメートルオーダーで供試 体内部の局所領域を経時的に観察できる非破壊 CT-XRD 連成法を用いて、鋼材を模擬した鋼線を挿入したセメン ト硬化体に繰り返し塩水浸漬を行い、微視的に鋼線腐食 の観察を行った。また腐食部に対して X 線回折測定を行 い腐食生成物に関する分析を行った。

2. 実験概要

2.1 供試体作製

使用した供試体は、中心部に鋼線を配置した水セメン ト比 60%のセメントペーストである。硬化後に、直径 3mm、高さ 5mm に加工した。鋼線は直径 0.1mm のピア ノ線を使用した。ピアノ線の成分構成比率は一般的な炭 素鋼の成分と類似している。供試体を調整後、測定用の 冶具に設置した。

2.2 塩水浸漬試験

鋼線の腐食を促進させるため塩水浸漬試験を行った。 使用した溶液は質量パーセント濃度 3%の塩化ナトリウム 水溶液で、測定用冶具内で浸漬と乾燥を繰り返した。測 定の間で塩水浸漬を行い、浸漬初期は溶脱により溶液の 成分が著しく変化することが考えられるため、浸漬開始 から5日目までは1日毎に溶液を交換した。その後、3日 間の乾燥と3日間の浸漬を2サイクル繰り返した後、4日 間浸漬、3日間乾燥を24サイクル繰り返した。

2.3 測定手法および測定条件

供試体の観察は、大型放射光施設、SPring-8 の白色ビ ームライン 28B2 にて開発した非破壊 CT-XRD 連成法を 用いた。本手法は最初に CT 測定を行い、得られた透過 像を再構成し、関心領域を決め、次にその関心領域に対 して X 線回折測定を行う。本手法の特徴は、様々な波長 を有する白色 X 線を用いるため、試料および検出器の角 度走査が不要であることと非破壊であるため試料の経時 的な観察を行えることにある¹⁾⁻³⁾。CT 測定条件はエネル ギーを塩水浸漬前の際に 25keV、塩水浸漬後の際に鋼線

写真-1 実験装置³⁾

部分の境界を明確に観察するため 45keV とした。投影数 は 1500 枚、露光時間は 200 秒とした。画素数は塩水浸漬 前が 768×768、浸漬後が 640×640 とし、画素寸法は塩水 浸漬前が 7.14(µm/pixel)、浸漬後が 5.22(µm/pixel)とした。 XRD 測定条件はビームサイズを水平方向 0.15mm×高さ 方向 0.05mm とし、回折角度(20)を 20°とした。照射時間 は 5 分とした。実験装置の外観を**写真**-1 に示す。

3. 実験結果

3.1 CT 測定結果

表-1 は塩水浸漬前と塩水浸漬後の供試体の CT 断面画 像である。画像の全体視野を統一させるため、塩水浸漬 前の CT 断面画像は、供試体を中心とした画素数 468× 468を関心領域とした画像を使用している。断面位置は、 塩水浸漬前、塩水浸漬後(上部)、塩水浸漬後(下部)でそれ ぞれ供試体上端から 2.74mm、2.95mm、3.25mm である。 画像上で白く表れている部分が鋼線部分である。塩水浸 漬前 CT 断面画像では鋼線部分は白色が濃く表れている が、塩水浸漬後の上部の CT 断面画像では鋼線中心の白 色が薄く表れている。また、下部の CT 断面画像では鋼 線部分全体の白色が薄く表れており、腐食は全面的に進 行していると考えられる。

また、塩水浸漬後の断面画像に対して、セメントペー スト部から鋼線部を横断した、線分上における輝度のラ インプロファイルを取得した。図-1に塩水浸漬後の上部 と下部のラインプロファイルを示す。上部のプロファイ ルから、鋼線の中央部で輝度が著しく低下している。ま た下部のプロファイルでは全面的に輝度が低下している。

これは腐食により鋼線の密度が低下したからであると考 えられ、全面的に腐食が進行していると考えられる。上 部より下部の方が腐食の進行が進んでいるのは、鋼線周 辺の空隙が大きかったことが影響していると考えられる。 また、鋼線近傍のセメントペースト部分において腐食生 成物のひび割れは確認できなかった。

3.2 XRD 測定結果

表-1 に示す塩水浸漬前と塩水浸漬後(下部)の CT 断面 図における、A、A'(供試体の鋼線近傍のペースト部分)、 B、B'(供試体の鋼線中心部分)は XRD 測定点である。な お鉱物の同定は、ICSD データベースの結晶構造パラメー タを基にエネルギーと回折強度の関係を算出した回折プ ロファイルを参照して行った。

図-2 に塩水浸漬前後の A 点と A'点の回折プロファイ ルを示す。塩水浸漬前では Portlandite のピークが認めら れたが、塩水浸漬後ではほとんど認められなかった。ま た塩水浸漬後では、Friedel's-salt と一致するピークが認め られ、鋼線近傍まで塩水が浸透していると言える。

図-3 に塩水浸漬前後の B 点と B'点の回折プロファイ ルを示す。塩水浸漬前のピークでは鋼線の主成分である Iron のピークが認められたが、他の成分と一致するピー クが認められなかった。また、塩水浸漬後では回折強度 が大きく低下すると共に Iron のピークが消失し、 Magnetite のピークが認められた。これより、鋼線が供試 体内で、腐食生成物に変質していることが示唆された。

4. まとめ

鋼線を挿入し硬化させたセメントペーストを用いて塩 水浸漬試験を行い、非破壊 CT-XRD 連成法により観察し た。その結果、XRD 測定から鋼線近傍まで塩分が浸透す ることが評価でき、CT 測定から腐食が進行していること が評価できた。また鋼線部の XRD 測定から、腐食により Iron が Magnetite に変質したことが認められた。

謝辞:本研究は、科学研究費補助金(課題番号 26289133、 26630200)を受けて実施した研究成果の一部である。また、 高輝度光化学研究センターSPring-8 の課題研究(課題番号 2015B1569、2015B1623、2015B1627、2016A1531、 2016A1532)として実施したものである。また測定の際に、 人見尚博士(大林組)、梶原堅太郎博士(JASRI)も協力して いただいたことをここに銘記し、関係各位に謝意を示す。

参考文献

- 人見尚、梶原堅太郎、杉山隆文:非破壊 CT-XRD 連 成観察によるモルタル内部の化学成分微細観察、第 67 回セメント技術大会講演要旨, pp.84-85,2013
- 2) T.Sugiyama, T. Hitomi, K.Kajiwara: Nondestructive

Integrated CT-XRD Method for Research on Hydrated Cement System, 4th International Conference on the Durability of Concrete Structures, pp.298-303, 2014 菊池玲子、高橋駿人、杉山隆文:非破壊 CT-XRD 連 成法を用いた流水にセメント硬化体ひび割れ近傍の 溶脱現象の考察、コンクリート工学年次論文集、 Vol.38、No.1、pp.1095-1100、2016

3)