地盤性状変化を考慮した海岸道路の 後浜斜面の高波による被災メカニズムに関する研究

A Study on Failure Mechanisms of Coastal Roads due to Ground Properties

函會	官工業高等専門学校 環	環境システム工学専攻	学生員	荒木京佑 (Kyosuke Araki)
	函館工業高等専門学	校 社会基盤工学科	正会員	宮武誠 (Makoto Miyatake)
寒地土木研究所	寒地水圏研究グルーフ	♬ 寒冷沿岸域チ−ム	正会員	本間大輔 (Daisuke Honma)

1. はじめに

我が国の主要都市の大部分は沿岸部に位置し,都市間 を結ぶ主要幹線道路もまた,海岸線に直近する海岸道路 の場合が少なくない.近年の慢性的な海岸侵食及び異常 気象による高波が重なり,海岸道路に来襲する高波の頻 度は増加傾向にあり,その度に道路盛土は崩壊し,交通 障害や規制に至る事例が数多く報告されている¹⁾²⁾.

北海道においても例えば,オホーツク海沿岸部にある 国道 A 号線では建設当初,海岸線から十分離れた位置 に設置されていたが,全面の砂浜の侵食進行に異常波浪 が重なり,後浜盛土の法先や法肩欠損等の被災が顕在化 している現状にある³⁾.高波による後浜盛土の欠損は 急速に進行するため,対応が遅れると走行車両の転落等 の重大事故につながるため,その予測手法や交通規制な どの明確な基準の確立は,海岸道路を管理・運営する上 で重要な課題である.現在のところ,波浪諸元及び巡回 による方法により規制が行われているが,国道 A 号線 のような寒冷地においては,積雪による凍結融解作用に より盛土性状が季節によって著しく変化する.

本研究は,オホーツク海沿岸にある国道 A 号線で 2004 年 1 月に起きた被災事例を対象とし,被災当時来 襲した遡上波を孤立波によって再現した海岸道路盛土の 崩壊実験を行い,盛土性状に応じた被災メカニズムを解 明することを目的とする.

2. オホーツク海沿岸の高波による後浜斜面の被災概 要と現地走査

写真-1は,国道A 号線において,10 年確立波相当の 高波(沖波波高 *H*₀=7.5m,有義周期 *T*₀=10.5s)が作用し た時の後浜斜面の被災状況である.汀線から道路盛土斜 面までの海底勾配は1:10 程度で,距離は60m 程度であ った.被災当時,道路面の D.L+7.9m まで波が遡上し, 後浜斜面が部分的に被災していた.

図-1 は研究対象領域の代表断面地形である.後浜斜 面は汀線から約 60m の位置にあり,底質は主に 0.2mm 〜2.0mm の砂粒子で構成され,中央粒径 *d*₅₀=1.2mm 付 近の粗砂が 8 割に及ぶ.

写真-1 国道 A 号線の海岸道路被災状況

現地走査は 2015 年 3,10 月に実施し、底質粒径分析、 相対密度試験及び原位置ベーンせん断試験をそれぞれ行 った. 目視の結果, 冬期は積雪により土壌は凍結状態に あり,融雪期となる春期には,盛土斜面から地下水の滲 出が確認できた.夏期から秋期にかけては、植生が繁茂 し、斜面表層は乾燥状態であった. 図-2 は、上述した 両期間における相対密度試験の結果を示す.測定地点 A ~C は,後浜斜面中腹部,測定地点 D は砂浜で計測し た結果である.両日とも調査期間前後において晴天であ り、降雨の影響は小さい条件であったが、3 月期の相対 密度は 10 月期と比較して大きく異なり 30~50%程度低 下している. 図-3 は、地盤表層のベーンせん断試験に よるせん断強度の変化を示す. 測定点 No.1~No.2 は後 浜斜面, No.3 は後浜斜面法先, No.4~No.7 は砂浜で測 定した結果であり、3月、10月ともに前浜から後浜斜面 に向かってせん断強度は増加するが、融雪期となる3月 では、10月と比較して全体的に5割の強度の低下がみ られる.これは、積雪により凍結していた底質が融解し、 土壌内の飽和度の増加に伴い、底質が緩詰めになった結 果,後浜斜面の強度が低下したことを示唆している.以 上のような道路盛土の季節的な変状は、来襲する高波の 規模に加え、道路盛土の被災リスクに影響を及ぼしてい ると考えられる.

3. 実験方法

(1) 固定床不規則波による被災波浪の再現実験

はじめに,被災時の波浪を再現するため,固定床による水理模型実験を行った.反射吸収式造波装置を備えた2次元造波水路(長さ24m,幅0.8m,深さ1.0m)に,現地の地形に合わせて岸沖方向に1:30から1:10勾配のモルタル製固定床を設置し,模型縮尺は1/45とした

(図-4). 実験には 1 波群を 200 波とした不規則波を 用い, 被災相当波浪である H₀=7.5m, T₀=10.5s, 潮位 D.L.+1.05m をベースに 2 周期, 5 波高に変化させた. 波 の遡上の計測は, 1:10 勾配部分の溝に, 容量線を水路 床と同じ高さに設定し, 遡上波 R を計測した. また, 併せて遡上流速 u を遡上高 1 周期あたりのエネルギー方 程式により求めた宮武ら⁴⁾の方法を準用し, 観測され た遡上高 R に対応する遡上波先端流速を遡上流速 u と して算出した.

図-4 固定床実験装置の概要図(単位:cm)

表-1 後浜盛土の性状条件

	相対密度	飽和度	せん断強度
	$D_r(\%)$	$S_r(\%)$	τ(kPa)
Run1	43.0 (緩い)	81.0 (不飽和)	0.669
Run2	52.0 (緩い)	100.0(飽和)	0.725
Run3	67.0 (中密)	83.0(不飽和)	1.81
Run4	75.0 (中密)	100.0(飽和)	0.770
Run5	88.0 (密)	87.0(不飽和)	2.06
Run6	84.0 (密)	100.0(飽和)	0.948

(2) 後浜斜面に被災を発生させる遡上波の特性

図-5 は、沖波波高 H_0 と遡上高 R との関係であり、 図中の D₁ と D₂ は後浜斜面の道路法肩高と道路法先高で ある. 被災相当波浪を作用させたときの R_{2%}/D₁ および R_{1/10}/D₁の値は、それぞれ 1.11、0.97 となった.現地に おける後浜斜面の被災は、D1~D2の範囲で発生してお り、道路面まで波の遡上痕があったことから、道路法肩 高 D₁ まで波が遡上していたことを表している.以上の 結果から、R2%が現地の被災時の遡上高を再現している と推察される.また,遡上高に及ぼす周期の依存性を調 べるため、被災相当波浪の周期をベースに大小に振った 2種類の周期に対し、波高5パターンの入射波を与えた. その結果、入射波の波高が同じでも周期の増大に伴い遡 上高が大きくなる傾向にあり, 被災相当波浪以下でも D1 まで波が到達する場合がある.以上のことから,後 浜斜面の被災が生じるリスクは、来襲する波の波高に加 え、周期にも依存していることがいえる.

図-6 移動床実験装置の概要図(単位:cm)

図-7 遡上流速及び水脈厚

(3) 孤立波による後浜盛土斜面の破壊実験

次に後浜盛土斜面の破壊メカニズムを解明するため、 孤立波による後浜盛土斜面の破壊実験を行った.実験は, 2次元造波水路内(長さ 23.5m,幅 0.5m,深さ 1.0m)に代 表粒径 0.28mm の珪砂を用い道路盛土斜面を成形した (図-6).盛土は,製作過程や後浜から与える水位によっ て,表-1のように地盤の性状を変化させた. Run1~Run6 に対応した間隙比 e はそれぞれ, 0.74, 0.70, 0.66, 0.65, 0.50, 0.59 である. なお, 相似律には Froude 相似律を採用し,底質粒径は透水係数の相似律 から規定した. 被災時の遡上波の特性を忠実に再現する ため,沖側から与える孤立波の諸元は,前述した固定床 不規則波実験5)の結果から,被災時の遡上波として妥 当性を得た R2% 遡上高に相当する水脈厚 η2% および遡上 波流速 и20%の線形近似関係式に一致するように検定した (図-7).この結果,孤立波の諸元は,H=8.1cm,T=11.0s である.この孤立波を4分間隔で10波作用させ,1/10 勾配の前浜斜面上の波浪変形, 遡上波変形および遡上流 速,地下水位,縦断地形変化の計測をそれぞれ波高計, ハイスピードカメラ,プロペラ流速計,水圧計,レーザ -砂面計により計測した.

4. 異なる地盤性状条件による盛土の被害状況

(1) 不飽和斜面の場合

図-8 に後浜盛土の性状条件の違いによる被災状況を 示す.盛土を不飽和とし,せん断強度の異なる Run1 と Run3 を比較すると,法肩部の崩壊が先行し法先部に堆 積する Run3 に対して,Run1 は法先部が先に崩れ始め る.その後,徐々に法肩部に向かって崩壊が進行し,道 路幅員の一部が欠損するほど大規模となる.以上のよう に,盛土のせん断強度は不飽和斜面の場合,相対密度の 減少とともに大きくなり,盛土の被害に多大な影響を及 ぼす. 図-9 は盛土斜面内の地下水位の時系列変化を示 す.相対密度が Run3 よりも相対的に緩い Run1 は Run3 に比して,地下水位の上昇量が大きく,上昇後の低下速 度も遅延していることから,より多くの浸透水を貯留し たことを示唆している.後浜盛土を更に密にした Run5 では,中密な状態の Run3 と同様に法肩部の崩壊が先行 したが,初期のせん断強度及び相対密度が大きいため盛 土自身の強度が大きく,道路幅員の欠損が最も小さい結 果となった.この結果,盛土斜面が不飽和で相対密度が 緩い状態の場合,盛土自身の強度が低下するとともに, 盛土内の貯留水の増加により,盛土の被災率は一層増大 する.

(2) 飽和斜面の場合

飽和斜面で相対密度の異なる図-8 中の Run2 と Run4 を比較すると,相対密度が中密な Run4 は Run3 と同様 に法肩部の崩壊が先行し,道路幅員の一部が欠損するほ ど大規模となる.一方,密度が緩い Run2 は Run1 と同 様に法先部・法肩部の順で崩壊するが,法肩部での欠損 量は小さくなる.密となる Run6 の場合は,不飽和斜面 と同様に,中密な状態とほぼ同じ破壊の進行であった. 飽和斜面の場合,せん断強度は相対密度によらず,ほぼ 同程度となる.また,図-9 中の Run2 と Run4 の地下水 位を見ると,飽和斜面の場合,ほぼ天端高に達し,両者 の差異は認められない.従って,相対密度の違いのみで, 盛土の被災率が変化することを示している.

図-8 地盤性状の違いによる被害状況

図-9 後浜盛土の地下水の時系列変化

(3) 崩壊土砂量

図−10 は後浜盛土斜面の崩壊がほぼ収束する 10 波目 の孤立波を作用させた後の相対密度と崩壊土砂量及びせ ん断強度の関係を示す.飽和斜面の場合(Run2,4,6)て・は, 崩壊量の変化は小さい.これは相対密度が増加しても土 粒子間のサクションが消失した状況にあり,せん断強度 はほぼ一定に推移しているためと考えられる.不飽和斜 面の場合(Run1,3,5)て・はせん断強度が大きくなるに従い, かさ密度がより一層密になるとともに,土粒子間のサク ションも大きくなるため崩壊量は大幅に減少する.

5. 結論

本研究で得られた結論を要約すると以下のとおりである.

- (1) 現地走査を行った結果,後浜盛土の性状,特にせん断強度,相対密度は季節による変動が著しく, 後浜斜面の被災の程度に大きな影響を及ぼしている.
- (2) 海岸道路の交通規制などの管理・運営は,来襲波の波高に加えて,周期にも十分配慮する必要がある.
- (3) 盛土のせん断強度や相対密度,飽和度などの性状 条件が複雑に影響しあうことで盛土の被災状況は 大きく変化する.

今後は,これらの現象を再現,評価できる数値解析モ デルの開発を行う所存である.

謝辞:本研究は学術研究助成基金助成金 基礎研究 (c)(課題番号16K06521)の補助を受けた. ここに記して感謝を表す.

図−10 相対密度と崩壊土砂量及びせん断強度の関係 参考文献

- 1) 越智聖志,木村克俊,宮武誠,上久保勝美:"護岸背後 への越波による盛土洗掘の再現実験",土木学会 論文集 B3(海洋開発),Vol.70,No.2,p.I_241-_246,2014.
- 2) 越智聖志,木村克俊,宮武誠,上久保勝美: "国道 238 号線猿払海岸道路における路肩部の高波被害とその復旧",土木学会論文集 B3 (海洋開 発),Vol.68,No.2,pp.I_876-I_881,2012.
- 本間大輔,山本泰司,宮武誠,木村克俊: "高波による 海岸道路の盛土被害の発生条件と対策の検討",土 木学会論文集 B3(海洋開発),Vol.71,No.2 p.I_269-I_274,2015.
- (4) 宮武誠,藤間聡: "波打ち帯の浸食・堆積過程に及 ぼす前浜地下水の流動特性",土木学会論文 集,No.754,pp.51-61,2004.
- 5) 本間大輔,山本泰司,宮武誠,木村克俊: "高波による 海岸道路の盛土被害の発生条件と対策の検討",土 木学会論文集 B3(海洋開発),Vol.71,No.2,(40),2015.