実験水槽内の砕波周辺の空気イオン濃度分布の特徴

Characteristics of air-in concentration around breaking waves in a laboratory flume

北海道大学工学部 〇学生員 八尾 斉拓 北海道大学大学院工学研究院 正会員 猿渡亜由未

1. はじめに

海面から絶えず発生している微細飛沫はその蒸発過程 を通して周囲の気相と熱,湿度,連動量を交換することに より海面近傍の流れ場に熱力学的影響を与える.また飛 沫の蒸発により生成される海塩粒子のうち上空に輸送さ れたものは海洋性エアロゾルとして日射量や雲量などを 変化させる (e.g. Veron, 2015)⁵⁾. このように海上気象 を決定するファクターの一つとなっている飛沫の発生量 を予測する為に,これまで数々の海上現地観測による研 究が行われてきたが,その殆どで海上飛沫粒子濃度は光 学式パーティクルカウンターが用いられてきた(e.g. Katsaros et al., 1987; $^{\scriptscriptstyle 3)}$ de Leeuw et al., 2000 $^{\scriptscriptstyle 2)})$ 光学式パーティクルカウンターは、空気流に光を照射し たときの散乱光強度を測定することにより空気中に含ま れる微細粒子の径と個数を測定するものである.即ち測 定した粒子の組成を特定することはできず、特に海洋性 エアロゾルと陸性エアロゾルが混在する沿岸城では飛沫 由来のエアロゾルの濃度を正確に観測することは極めて 困難である.

浜辺や滝の近くなど,飛沫の生成が活発に行われている 場所では周辺の空気中のマイナスイオン濃度が高いこと が知られている(e.g. Tammet et al., 2009⁴⁾)

これは,Ballo-electric effect 又は Lenard effect と呼 ばれるもので、電気二重層が形成される水面の極表層が 分裂することにより、負の電荷を帯びた飛沫が空気中に 放出されることに起因する現象である(e.g. Bhattacharyya et al., 2010¹¹)空気中のマイナスイオン 濃度は水面の分裂度、即ち微細飛沫の発生量を反映する ものであり、新たに発生した飛沫の量を測定する一つの 指標として利用できる可能性がある.本研究の最終的な ゴールは海域における飛沫の発生と空気イオン濃度との 関係を明らかにすることであり、そのために共著者ら⁶¹は、 周囲の電気的な環境に影響を受ける空気イオン濃度を測 定可能な実験条件について調査すると共に、外洋における 主な飛沫の発生原因となるバブルバースティングが生じ た際の周囲の空気イオン濃度の上昇過程を測定すること に成功している.

本研究の目的は,砕波帯周辺の空気イオン濃度の分布と その時間変化について明らかにすることである.

本研究ではまず,実海域の砕波帯周辺における空気イオ ン濃度の分布の現地観測を行い,砕波の影響によるマイ ナスイオンの発生とその内陸への移流の影響について考 察する.更に次元造波水槽内で砕波を発生させたときの 空気中のマイナスイオン濃度分布の遷移を種々の砕波条 件の下,調査した.

2. 現地観測

実際の波によるマイナスイオンの発生の有無,海岸 からの距離による発生量の変化,またパーティクルカ ウンターを並行して使用することで陸性エアロゾルと 海洋性エアロゾルについて解明するため現地観測を行 なった.

下図の8地点が観測点でありその地点とパーティク ルカウンターの結果を示す

図-2 地点ごとの粒子数

 0.3μ m, 1.0μ m, 5.0μ m の三粒径で観測を行ったが 1.0 μ m では沿岸付近である地点 1 で大きな値を示してい る.これは海洋性エアロゾルが最も起因するのが 1.0μ m の領域であるからである. 一方, 0.3μ m の領域は陸生エ アロゾルにも大きく作用されるため沿岸からの距離とは 相関を持っていない. 比較的小さいといわれている P.M2.5, SPM はそれぞれ 2.5 μ m 以下, 10μ m 以下であり

今回は 5,0 μ m の領域に分類される. 次に同じ各地点で得たマイナスイオンカウンターによる結果を以下に示す.

海洋や河川が近くにある地点6までは比較的大きな値 を示しているが地点7,8ではイオン量は右肩下がりであ る.このことから微小な物質であるイオンは数キロ程度 なら容易に浮遊,拡散されるや水の影響を受けているこ とがわかる.

3. 室内実験

3.1 実験方法

全長 23m, 幅 60cm の二次元造波水槽内で実験を行った. 側壁は全面ガラス製であり,造波板から 10m の距離か ら底面は 1/15 勾配となっている.水平部の水深を 18cm とし,周期 1.0s,波高 5.0cm, 8.0cm の条件の波浪を造 波した.底面勾配の変化地点から岸方向に x 軸を定義 すると,それぞれの波浪条件における砕波点位置は x = 180cm, 180cm,着水点位置は x = 220cm, 200cm であった. 砕波形態は巻波であった.

水槽上部から吸気口を鉛直下向きにしてマイナスイオ ンカウンターを設置した.設置位置は底面勾配の変化位 置から x = 200; 240; 280 cm とした.各波浪条件,測定 位置で造波開始と共に空気イオン濃度の測定を開始し, それぞれ少なくとも5分間の測定を行った.本研究では 実験の再現性について確認するために,種々の気温,湿 度条件の時間帯に3回の試行実験を行った

実験では,始点からの距離を変化させそのイオン量の 変化を見ている. その際,砕波点,着水点を観測しその違 いも記録している.また,造波波高,周期も変化させ様々 な条件でデータをとっている.

3.2 実験結果

図 5 は地点 1, 2, 3 (それぞれ x = 200; 240; 280 cm) に おけるマイナスイオン濃度の 5 分間の測定の, 1~3 回 目の試行実験の結果を表す. 各試行における温度と湿度 の条件は試行1で8cmの時で20.1 ℃,43.7%と5cm時で 20.0℃,44.9%, 試行 2 で 8cm の時で 20.3 ℃, 45.6% と 5cm の時で 20.2℃,43.5%, 試行 3 で 8cm の時で 19.8℃,49.8% と 5cm の時で 19.8℃,49.8%である. 気温と湿度の僅か な変化に依存してベースの空気イオン濃度が変化し、各 試行における実験結果の再現性は極めて低くなっている. 図中赤,青のラインはそれぞれ造波波高**cm, **cm の ケースを表すが、波高の変化によるケース間のイオン濃 度の変化は顕著に見られない. しかしながらいずれの試 行、いずれのケースにおいても砕波点から汀線にかけて マイナスイオン濃度の増加傾向を示しており、砕波飛沫 発生時の水面分裂に起因する空気中へのマイナスイオン の放出により砕波帯内のイオン濃度分布が変化したもの と考えられる.

図-5 イオン量(赤:波高 8cm 青:波高 5cm)

4.結論

本研究では新たな飛沫発生量の推定指標として用いるこ とができる可能性がある空気中のマイナスイオン濃度の, 二次元造波水槽内の砕波帯周辺における空間分布を測定 した.空気イオン濃度は周囲の電気的環境に敏感に応答 するため注意が必要であるものの,条件を整えることに より砕波に伴う空気イオン濃度の変化を測定可能である ことを確認した.空気イオン濃度は気温と湿度の環境に も依存するため,実験の再現性を確保する為にはこれら の条件をコントロールする必要がある事が確認された.

砕波帯内においては砕波点から汀線にかけて空気イオ

ン濃度の緩やかに増加していることが明らかとなった. これは砕波飛沫発生時の水面分裂に起因した空気中への 空気イオンの放出に起因するものと考えられ、今後実験 条件を整えた上での更なる実験を行うことにより、より 詳細なイオン濃度の分布の特徴について明らかにする必 要がある.

謝辞 本研究の現地観測を行うに当たり北海道大学大 学院の本間翔希氏並びに瀬戸岳史氏にご協力頂いた.こ こに記し謝意を表する.

参考文献

1) Indrani Bhattacharyya, Joshua T.Maze, George E.Ewing, and Martin F.Jarrold. Charge separation from the bursting of bubbles on water. The Journal of Physical Chemistry A, Vol.115, No.23, pp.5723-5728, 2011.

2) Gerrit de Leeuw, Filip P. Neele, Martin Hill, Michael H. Smith, and Elisabetta Vignati. Production of sea spray aerosol in the surf zone. Journal of Geophysical Research: Atmospheres, Vol. 105, No. D24, pp. 29397-29409, 2000.

3) Kristina B. Katsaros, Stuart D. Smith, and Wiebe A. Oost. HEXOS-humidity exchange over the sea a program for research on water-vapor and droplet fluxes from sea of air at moderate to high wind speeds. Bulletin of the American Meteorological Society, Vol. 68, No.5, pp. 466-476, 1987.

4) H. Tammet, U. Horrak, and M. Kuhmala. Negatively charged nanoparticles produced by splashing of water. Atmospheric Chemistry and Physics, Vol. 9, No.2, pp. 357-367, 2009.

5) Fabrice Veron. Ocean spray. Annu. Rev. Fluid Mech., Vol. 47, No.1, pp. 507-538, 2015.

6) 竹下勝利, 猿渡亜由未. バブルバースティングによる飛沫と周囲の空気イオン濃度の計測. 土木学会北海道 支部論文報告書