流動粒子底面上に発達する乱流場の特徴

Characteristics of a turbulent flow field on a fluidized granular bed

北海道大学大学院工学院 ○学生員 岡義久 (Yoshihisa Oka) 北海道大学大学院工学研究院 正 員 猿渡亜由未 (Ayumi Saruwatari)

1. はじめに

海底に発達する振動せん断流により巻き上がった底面 粒子がもたらす乱れの発生、発達についてはこれまで 数々の研究がなされてきたが未だそれらに関する知見は 十分ではなく,底面から発生する乱れ強度の予測モデル は確立されていない. Lamb (2004) らは液相のみのと きは O (cm) であった波浪下のせん断流中の底面境界 層厚さが粒子底面上では O(mm) にまで減少する事を 実験により示したが、このとき境界層内での流速勾配が 増大するため粒子底面近傍ではより強い乱れが生成され 得ることを指摘した. 粒子の巻き上がりを伴う場合粒子 周辺で粒子スケールの流速変動と渦の生成が乱れを更に 強化すると同時に, 数密度や粒径によっては粒子流体混 相流の有効粘性の増大や粒子表面における抗力によるエ ネルギー散逸等の効果により乱れが低減される.複雑に 影響し合いながら発達する粒子底面上の乱流場は、高数 密度の粒子-流体混相流場の実験,数値計算等の困難さ ともあいまって、未だ現象の十分な解明には至っていな い. 粒子底面近傍の流れ場計測についてはこれまでの研 究では超音波流速計や濁度計,間隙水圧計などを用いて 多くの計測が行われてきたが、著者ら(2010)は同一の 屈折率を有する粒子と液体を用いた高数密度粒子混相流 れの可視化計測法を提案している.

本研究では振動流の条件を変化させ、固定平板上、移 動可能な粒子底面上で発達する流れ場を画像計測するこ とにより、振動流の最大流速が底面上の波動境界層に与 える影響を調査する.

2. 実験方法

実験は 50 mm×50 mm の正方形断面を有する透明アク リル製U字型振動流装置内で行った(図-1).装置内部 の流れは装置片端から送り込まれる空圧振動により駆動 される. 振動流装置の水平部には深さ 50 mm, 幅 50mm, 長さ 550 mm のサンドピットが設置されており,底面を (1)移動可能な粒子底面, (2) アクリル平板による固 定床の2パターンに変化させて実験を行った.本研究で は全てのケースで液相として約 51% ヨウ化ナトリウム 水溶液(屈折率:1.45)を用い、底面を構成する粒子に は砂の主成分であり固体としては低屈折率材料でもある 透明シリカ粒子(屈折率:1.45,中央流径:350 µm) を用いた.底面粒子と流体の屈折率のわずかなずれから, シリカ粒子を完全に透過することは出来ていないが、光 源として照射する光の底面近傍における乱反射の低減を 可能とし、底面ごく近傍まで流速を画像計測する事が可 能となる.

図-1 U字型振動流装置と装置のセットアップ

振動流装置の水平床中央部を本研究のテストセクショ ンとしている. U字管中央部の横断面に装置上方から波 長 532 nm の YAG レーザーを光源としてシート状に照射 し、液相に混入した粒径 40 µm 以下のアルミ粉末(比 重:2.7)の動きを装置前面に設置した高速度カメラで 撮影することにより流速の画像計測を行った. アルミ粉 末の比重は液相と一致しないが、微小な体積ゆえに重力, 浮力の影響を受けにくく、本実験の時間スケールにおい ては流れに追従すると考える. 高速カメラの撮影条件は 表-1に示す通りである.図-2が典型的な撮影画像である. 鉛直方向の撮影領域はテストセクション内の初期底面レ ベルを z=0 としたとき, z=1mm ~ 3.5mm の範囲とし た. 撮影した連続画像を基に、PIVとPTVを組み合わせ ることでより高精度の流速計測が可能な Super-Resolution Particle Image Velocimetry (SR-PIV) (Watanabe ら, 2006) を行うことにより流速場を画像 計測し, Moving Least Square (MLS) (竹原ら, 2009) により離散化された流速データからせん断応力、渦度を 求める.

装置内の振動流は全てのケースにおいて正弦振動(図

表-1 撮影条件

解像度	0.03 mm/pixel
FOV	$16 \text{ mm} \times 16 \text{ mm}$
撮影周波数	500 fps
露光時間	1/5000 sec

図-2 撮影画像と振動流の概念図

図-3 正弦振動流速

-3) であり、その周期は1 sec、最大流速は固定床上にお $\mathcal{W} \subset (\text{case-1}) 150 \text{ mm/sec}, (\text{case-2}) 220 \text{ mm/sec},$ (case-3) 300 mm/sec である. 静止状態から振動流を発 生させ、流れが定常となる 10 周期目を本研究の解析対 象としている.また、本論分では水平方向にx軸を、静 水時の底面のレベルを原点として鉛直上方に z 軸を定義 する. また, 平均流速 = 0 となる位相を t = 0 と定義し 以下に示すのはt=0~Tの間での5回の試行実験の結果 を統計処理したものである.

3. 結果

3.1. 流速プロファイルとせん断応力プロファイル

図-4は case-1 における水平流速, 鉛直流速の鉛直プロ ファイルを 1/8 周期ごとに表したものである. 同一の空 圧振動を与えても, 粒子底面がより小さな最大流速を持 つが、これは底面内部間隙への浸透流の影響と、液相か ら底面粒子への運動量の輸送に起因するものであると考 えられる. 図中のプロットは平均流からの速度欠損が 5%となる鉛直距離で定義される境界層厚さを表す.両 底面とも最大流速の増加に伴い,境界層厚さも増大する. また図-5 は全ケースの最大流速となる位相(2/8 周期) における水平流速の鉛直分布である.境界層内の流速勾 配が粒子底面では相対的に小さくなっている. 粒子底面 ではいずれのケースにおいても底面上層数 mm 程度が掃 流状態で流動する流れ場が形成されていた(図-2に概念 図を示す).この底面の流動により、底面境界が完全な ノンスリップ条件ではなくなり底面で生じるせん断応力 が低減されたことに起因する.図-6は case-2 におけるせ ん断応力の鉛直プロファイルであり、確かに粒子底面に

図-6 せん断応力の鉛直プロファイル (case-2) (左:粒子底面 右:固定床)

おいては、z = 1mm 以下においてせん断応力が小さくな っているのに対して、固定床ではz=1mm以下にもせん 断応力が見られる.

3.2. 底面上に生じる乱れ

shear [Pa]

図-7は case-1 において生じた乱れエネルギー(TKE) の鉛直分布である. どちらの底面も底面近傍に TKE が 高く発生する位置があるが、粒子底面がより大きい値を 示す. これは底面表層の粗度, 浮遊粒子由来の粒子スケ ールの乱れの影響であると考えられる.図-8は case-1 に おける TKE を水平成分と鉛直成分に分離し、その標準 偏差を示したものである. どちらの底面でも z=2mm 付

(左:水平流速 右:鉛直流速 上:粒子底面 下:固定床)

近において水平成分に特徴的なばらつきが見られ,非等 方性の乱れが TKE に寄与していることが分かる.底面 粒子の巻き上がりが少ない条件では,粒子底面において も鉛直流速が抑制されるためであると考えられる.非等 方性の乱れは底面,最大流速を問わず全ケースで確認さ れた.

図-8 は最大流速による1 周期間の平均 TKE の変化を 示したものである.最大周期によらず,境界層内の平均 TKE は境界層外のものより大きく,TKE のソースであ る事を示唆している.また境界層内外ともに最大流速の 増加に伴い,平均 TKE も増加する.

4. まとめ

振動流の最大流速が底面近傍の流れ場に与える影響に ついて可視化実験により調査した.流速の標準偏差から 非等方性の乱れが TKE に寄与してる.最大流速の増加 により,境界層厚さは増大し,TKEの1周期平均も増大 する.

参考文献

1) Lamb, M. P., D'Asaro, E., and Parsons, J. D.:

Turbulentstructure of high-density suspensions formed under waves, J.Geophys. Res.:Oceans, Vol.109, C12026, 2004.

2) Saruwatari, A., Matsuzaki, W., and Watanabe, Y.: Turbulent behavior of fluidized sediments in composite shear flow, Proc.Int. Conf. on Coast. Eng., Vol.32, Sediment 7, 2010.

3) 江藤剛治・竹原幸生・横山雄一・井田康夫:水流の 可視化に必要な関連技術の開発-比重整合・屈折率整 合・他波長計測-,土木学会論文集, Vol.553/II-34, pp.87-106, 1996.

4) Watanabe, Y., Hideshima, Y., Shigematsu, T., and Takehara, K.: Application of three-dimensional hybrid stereoscopic particle image velocimetry to breaking waves, Meas. Sci. Technol, Vol 17, No.6, pp.1456-1469, 2006.