非平衡風波場における気流変化の可視化実験

Visualization experiment of airflow change in non-equilibrium wind field

北海道大学工学部4年〇学生員杉村一直 (Kazunao Sugimura)北海道大学院工学研究院正員渡部靖憲 (Yasunori Watanabe)

1. はじめに

大気海洋境界面近傍の流れ及び海面過程は、平衡風波 場を仮定した粗面上の乱流境界層流れのバルク式を基本 として評価されてきた。この時、粗度は海洋波の波高、 波形勾配あるいは波速と風速の比(波齢)によって経験 的に見積もられ、もっとも簡単なものは摩擦速度のみの 経験関数である Charnock(1955)の式として知られている。 しかしながら、こうして得られた粗度で見積もられたバ ルク定数(例えば海面抵抗係数)は、風速、水面波の状 況、風波場の変動に依存して大きくばらつき、観測、実 験において一意に決定できない。特に台風等の低気圧に 伴う風波場では、時間的に増減する風速、低気圧との相 対位置に依存して変化する風向、それらに応答して変化 発達する波浪によって非定常非平衡は風波場が形成され、 平衡状態を前提とするバルクモデルがそもそも適用でき ない可能性がある。近年、ハリケーンの強風速下で海面 抵抗係数の飽和あるいは減少を表す観測結果(例えば Pawell 2003) について様々な研究が行われてきた一方 (例えば Donelan 1992)、風波場の非平衡性の影響が不 明なため、抵抗係数の変動機構を決定することは困難と 考える。

本研究は非平衡風波場を風洞水槽において再現し、風 によって発達を継続する波浪によって変動する風場の特 長並びにその統計量の発達を高速高解像度動画像計測に よって評価しようとするものである。

2. 実験方法

本 実 験 は 図 1 の よ う に W100mm × H340mm × L2000mm の風洞水槽を用いて行う. 風洞水槽は送風機, 水槽, 発煙機からなる.

風洞上部の送風機から風を送り込み,風が赤の矢印の 方向に沿って風洞装置全体を循環する.風洞内の曲部に よって生じる風の乱れを軽減するため,水槽入口付近に 整流板が備え付けられている.

風の流れを可視化するため、風洞に備え付けた発煙機 からスモークを風洞内に排出する.レーザーを水面に向 けてシート状に照射し、水槽側面から高速度カメラで約 5cm×5cmの Field-Of-View(FOV)のレーザーシート面上 のスモーク粒子の流れと水面形状の変化が撮影され、較 正画像を基に線形変換された解像度 0.088mm/pixel の画 像に対して解析が行われる.

水槽入口付近を原点 O とし,鉛直方向を Z 軸,水平 方向を X 軸とする.水槽内の静水位(η)を制御し,風速 分布ならびに風速波浪の発達度合いを調整する.

なお,風洞内の風場の基本特性を調査する予備実験に おいて,熱線式のスティック風速計を用い任意の水位に 対する水槽入口付近(X=0(cm))の風速分布を計測した.

図1:風洞水槽の概略

3. 解析方法

キャリブレーションを行い高速度カメラで撮影した画 像の実際の大きさを決定する。格子の大きさが 1cm× 1cm のボードを 1024×1024pixcel の解像度で撮影する。 スモーク粒子の流速を計測するため PIV(粒子画像流速 測定法)を行う。PIV は流れ場における多点の瞬時速度 を非接触で得ることができる流体計測法であるので,ス モーク粒子をトレーサにして風速を計測する本実験に適 している.

4. 結果

予備実験において風速の簡易計測を行い水槽内の風速 分布の特徴を調査した. $extsf{2}$ は水槽内静水位 η =0~6cm に対する X=0 での水平風速の鉛直分布を表している. η <2cm では、循環風洞内の流入部直前の曲部における気 流の剥離により、水面近傍に最高風速が生じ、境界層流 れの特徴を再現しない. 一方、 η >4cm では、低高度風速 ピークは発生せず、水面近傍でおおよそ鉛直軸に対して 単調増加する分布を表す. 以降、 η =4cm の条件における 計測結果を議論する.

図 3 は, X=0cm, 100cm, 200cm における高速撮影画

像の一例を表す.海上風に駆動された初期水位撹乱が発 達し軸対称な波へと変形していく過程を確認することが 出来る.

図 3:風波の高速撮影画像 (上から X=0cm, 100cm, 200cm)

図4は、PIVによって算出した X=100cm における平 均風速分布の一例を示す.試行計測が十分でなく風速変 動が強く現れており,統計評価を行うため今後さらなる 計測を行う必要がある.

図4:平均風速分布

5. おわりに

高速度カメラでスモーク粒子と水面を撮影し, PIV を 用いて平均風速分布を求めた. 試行計測が十分でなく風 速変動が強く現れており,統計評価を行うため今後さら なる計測を行う必要がある.

6. 参考文献

Charnock, H. (1955), Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81, 639–640, doi:10.1002/qj.49708135027.
Donelan, M. A., M. G. Skafel, H. Graber, P. Liu, D. Schwab, and S. Venkatesh (1992), On the growth rate of windgenerated waves, Atmos. Ocean, 30(3), 457–478, doi:10.1080/07055900.1992.9649449.

Powell, M. D., P. J. Vickery, and T. A. Reinhold (2003), Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422, 279–283, doi:10.1038/nature01481.