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1 INTRODUCTION

Fluvial dunes are found whenever a fluid in the low flow
regime interacts with an erodible bed. As the fluid flow
changes from a low flow regime to an upper flow regime,
dunes disappear and antidunes start to form. The presence
of this repetitive, wave-like features suggest that there is an
inherent instability in the bed making it impossible for a
horizontal bed to stay horizontal. The formation of differ-
ent bed features is of great interest because of its importance
in the prediction of bed resistance on river channels. Dune
formations provide big flow resistance, whereas antidunes
provide little flow resistance.

Linear stability analysis has been applied to investigate
the formation of dunes. Fredsøe (1974) derived a bedload
transport formula including the effect of gravity on an in-
clined bed. Fredsøe’s formulation is performed on the ba-
sis of the work of Meyer-Peter & Müller (1948). Kovacs
& Parker (1994) also proposed a vectorial bedload trans-
port formula on the basis of the Bagnold hypothesis and
the work of Ashida & Michiue (1972). Although numerous
studies were performed regarding the formation of fluvial
dunes, the analyses failed to include the effect of the resis-
tant force due to the pressure gradient exerted on a sediment
particle.

In this study, a bedload transport formula incorporating
the pressure gradient is derived. The effect of pressure
gradient on dunes is then investigated in terms of linear
stability analysis.

2 FORMULATION
2.1 GOVERNING EQUATIONS

The coordinate system (x,y) and the conceptual dia-
gram of the flow are presented in Fig. 1. The curves
y = R(x)+D(x) and y = R(x) refer to the upper and lower
boundaries of the flow domain, respectively. The term D is
the local flow depth, and R is the reference point where the
velocity in the logarithmic velocity distribution vanishes.

The flow in an open channel is described by the
Reynolds-averaged two-dimensional Navier-Stokes equa-
tions. A quasi-steady assumption, in which the flow is as-
sumed to adapt instantaneously to changes in bed elevation,
is employed in this model. The nondimensional Navier-
Stokes equations are written as

Fig. 1. Conceptual diagram of flow and the coordinate system
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where x and y are the coordinates in the streamwise and the
depth direction, respectively. The variables U and V are the
velocity components in the x and y direction, while P and S
is the pressure and the average bed slope, respectively. The
Reynolds stress tensor, Ti j(i, j = x,y) is expressed by the
mixing length turbulent model.
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where νT is the eddy viscosity, l is the mixing length, and
κ is the Kármán constant (= 0.4).

The above equations are nondimensionalized using the
following expressions

(U∗,V ∗) =U∗f 0(U,V ) (5a)

(x∗,y∗,d∗s ) = D∗0(x,y,ds) (5b)

(P∗,T ∗i j) = ρU∗2f 0(P,Ti j) (5c)

where the superscript ∗ denotes the dimensional variables.
The variables d∗s and λp denotes the sediment diameter and
porosity, respectively, while U∗f 0 and D∗0 refers to the fric-
tion velocity and the flow depth in the base state condition.

The stream function is introduced as

(U,V ) =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
(6)

Equations (1) and (2) is then rewritten in terms of Ψ. The
term P is then eliminated from the rewritten equations.
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Fig. 2. Force balance on a sediment particle

In order to facilitate the application of the boundary con-
ditions at the water surface and the riverbed, coordinate
transformation is introduced.

(ξ ,η) =

(
x,

y−R(x)
D(x)

)
(8)

2.2 BOUNDARY CONDITIONS

The boundary conditions at the water surface and the bot-
tom are

u · ens = 0 at η = 1 (9a)
ens ·T · ens = 0 ets ·T · ens = 0 at η = 1 (9b,c)

u · enb = 0 u · etb = 0 at η = 0 (9d,e)

where u is the velocity vector (= (u,v)). The unit vectors
tangential and normal to the water surface are ets and ens.
On the other hand, the unit vectors tangential and normal to
the bed surface are etr and enr. The term T denotes the sress
tensor expressed as

T=

[
−P+Txx Txy

Txy −P+Tyy

]
(10)

2.3 BEDLOAD FORMULATION
2.3.1 FORCE BALANCE ON A SEDIMENT PARTICLE

A fully nonlinear and vectorial bedload formulation,
which is applicable for an arbitrary bed slope in the stream-
wise and transverse direction was formulated by Kovacs &
Parker (1994). The formulation was based on the work of
Ashida and Michiue (1972) and the Bagnold hypothesis. In
Kovacs and Parker’s formulation, the pressure distribution
in the flow is approximated to be hydrostatic in calculating
the particle’s immersed weight. In this paper, the effect of
pressure gradient is introduced into the formulation.

In order to derive the bedload transport equation includ-
ing the effect of pressure gradient, a force balance on a sedi-
ment particle is performed. Fig. 2 shows the different forces
acting on a sediment particle moving in the bedload layer.

The vector k̂ is the unit vector in the upward direction,
while n̂(= enr), and ŝ(= etr) refers to the unit vector nor-
mal and tangential to the bed surface. The variable ub is the
flow velocity in the vicinity of the bed and vp is the veloc-
ity vector of the sediment particle. The gravity force, drag
force, and the dynamic Coulomb resistive force are repre-
sented by FW , FD, and FC, respectively. The resistant force
due to the fluid pressure is introduced as FP. The equations
of the forces acting on the particle are written as

Fig. 3. Force balance on the bedload layer per unit area

FW =−4
3

ρRsgπ

(
1
2

d∗s

)3

k̂ (11)

FD =
1
2

ρCDπ

(
1
2

d∗s

)2

| ur | ur (12)

FP =−4
3

π

(
1
2

d∗s

)3(
∂P∗

∂x
,

∂P∗

∂y

)
(13)

FC =−(FW +FP) · (−n̂)µct̂vp (14)

where Rs is the submerged specific gravity (Rs = 1.65), CD
is the drag coefficient, ur is the fluid velocity relative to
the particle velocity, vp (i.e. ur = ub− vp). The unit vec-
tor in the direction of the particle motion is denoted as t̂vp.
The term µc is the dynamic Coulomb friction coefficient
(= 0.84).

The force balance on a sediment particle tangential to the
bed is written as

FD +Wg +Pt +Fc = 0 (15)

where Wg and Pt are the tangential components of Fw and
Fp, respectively. Moreover, the terms ur, ub, and vp are nor-
malized by (Rsgd∗s )

1/2.
Substituting (11)-(14) into (15), the nondimensional

equation for the particle velocity is obtained.
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} 1
2
]

(16)

where τb and τc0 are the nondimensional bed shear stress
and the critical Shields shear stress for a horizontal bed, re-
spectively. The relationship between the flow velocity, ub,
and the friction velocity, u f = (τb/ρ)1/2, is expressed by
the coefficient a.

2.3.2 FORCE BALANCE ON THE BEDLOAD LAYER PER
UNIT AREA

The volume of particles in the bedload layer per unit area
χ , shown in Fig. 3, is expressed as

χ = ζ ηs (17)

where ζ is the thickness of the bedload layer, ηs is the vol-
ume fraction of sediment within the bedload layer.

A force balance is performed on the bedload layer per
unit area. The forces acting on the bedload layer per unit
area are shown in Fig. 3. The terms τ∗b and τ∗B denote the
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shear stress acting on the top and at the bottom of the bed-
load layer, respectively, while τ∗G is the grain stress repre-
sented as the Coulumb friction stress, and p1−4 refers to the
force due to the fluid pressure. The equations of the forces
acting on the bedload layer per unit area are written as

f W =−χρRsgk̂ (18)

f p =−χ

(
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∂x
,

∂P∗

∂y

)
(19)

τ
∗
G = ( fw + fp) · (−n̂)µct̂vp (20)

The force balance on a sediment particle tangential to the
bed is written as

τ
∗
b +( f W · ŝ)ŝ+( f p · ŝ)ŝ = τ

∗
G + τ

∗
B (21)

The shear stress on the top and at the bottom of the bed are
normalized using (ρRsgd∗s ). The bedload layer per unit area
is also normalized using the term d∗s . The nondimensional
form of (21) is obtained as

τb−χ
[(

k̂+∇P
)
· ŝ
]

ŝ

= χ
[(

k̂+∇P
)
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]

µct̂vp + τB (22)

From Kovacs and Parker (1994), the shear stress at the bot-
tom of the bedload layer, τB, is equal to the critical Shields
shear stress, τc, which is expressed as

τB · ŝ = τc = τc0
(
k̂+∇P

)
·
(

n̂+
ŝ

µc

)
(23)

Substituting (23)into (22) and rearranging the terms. The
volume of particles, χ , in the bedload layer per unit area is
then written as

χ =
τb− τc

µc
(
k̂+∇P

)
·
(

n̂+ ŝ
µc

) (24)

2.4 EXNER EQUATION AND BEDLOAD FORMULA

The non-dimensional Exner equation expresses the time
variation of the bed elevation.
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+
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where Φ is the nondimensional bedload sediment transport
rate per unit width expressed as

Φ =
q∗b

(Rsgd∗2s )1/2d∗s
= χvp (26)

Substituting (16) and (24) into (26), the nondimensional
bedload sediment transport rate per unit width is rewritten
as
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where Bx is the x derivative of the bedload layer. Px and
Py are the x and y derivative of the piezometric pressure,
respectively.

3 BASE STATE SOLUTION

The base state flow is the initial condition of the linear
stability analysis wherein the bed is subjected under uni-
form flow conditions. The variables in the base state are
expressed as

(Ψ,P,D,Z,R,B) = (Ψ0,P0,1,0,R0,B0) (28)

The variables in the base state are substituted to the govern-
ing equations and the following solutions are obtained

P0(η) = S−1(1−η) (29)

Ψ0(η) =
1
κ

[
(R0 +η) ln

(
R0 +η

R0

)
−η

]
(30)

Integrating from η = 0 to 1, the friction coefficient C is ob-
tained.

C−1 =
U∗a0
U∗f 0

=
1
κ

[
(1+R0) ln

(
1+R0

R0

)
−1
]

(31)

where U∗a0 is the depth-averaged velocity in the base state.

4 LINEAR STABILITY ANALYSIS

4.1 PERTURBATION EXPANSION

Perturbation expansion is imposed on the base state solu-
tion and the variables are expanded as follows

(Ψ,P,D,Z,R,B) = (Ψ0,P0,1,0,R0,B0)+

A(Ψ̂1, P̂1, D̂1, R̂1, R̂1, R̂1)+ c.c. (32)

(Ψ̂1, P̂1, D̂1, R̂1) = (Ψ1,P1,D1,R1)exp [i(αξ −Ωt)] (33)

where A is the amplitude of the pertubation, c.c. is the com-
plex conjugate, α and Ω are the wave number and the an-
gular frequency of perturbation, respectively.

At O(A), equation (1) rewritten in terms of Ψ and equa-
tion (7) reduces to

iα +P(η)Ψ1(η)+PD(η)D1 +PR(η)R1 = 0 (34)
LΨ(η)Ψ1(η) = LD

1 +LR(η)R1 = 0 (35)

where P and L are linear operators. The boundary condi-
tions also reduces to

Ψ1(1) = 0 P1(1) = 0 (36a,b)
Ψ1(0) = 0 DΨ1(0) = 0 (36c,d)

whereD= ∂/∂η The stream function Ψ1 is expanded with
the use of Chebyshev polynomials

Ψ1 =
N

∑
n=1

anTn(ζ ) (37)

The term Tn is the nth order of the Chebyshev polynomial,
and ζ is the variable of the Chebyshev polynomial defined
in the range [−1,1]. The physical domain 0 ≤ η ≤ 1 is
transformed into the domain of the Chebyshev polynomial
using −1≤ ζ ≤ 1 using the transformation expression

ζ =
2ln[(η +R0)/R0]

ln[(1+R0)]/R0
−1 (38)
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Equation (38) is evaluated at the Gauss-Lobatto points, ex-
pressed as

ζ j = cos( jπ/N) ( j = 1,2, . . . ,N−2) (39)

Arranging the results of the formulation above, a linear
system of algebraic equations is obtained

L ·a= lR1 (40a)

where

a=
[
a0, a1, a2, . . . , ,aN−1 ,aN ,D1

]
(40b)

L=



P̌ΨT0(1) . . . P̌ΨTN(1) P̌D(1)
T0(1) . . . TN(1) 0
· . . . · ·
· . . . · ·
· . . . · ·

ĽΨT0(ζN−2) . . . ĽΨTN(ζN−2) ĽD(ζN−2)

ĎT0(−1) . . . ĽTN(−1) 0
T0(−1) . . . TN(−1) 0


(40c)

l =
[
−P̌R, 0, −P̌R(ζ1), . . . , −P̌R(ζN−2), 0, 0

]
(40d)

the ˇdenotes the linear operator with η transformed into ζ .
Because L is regular, (40a) is solved to be

a= L−1lR1 (41)

and the perturbed stream function, Ψ1 and flow depth, D1
are obtained in the forms containing R1 as a factor.

4.2 PERTURBATION EXPANSION OF BEDLOAD

The bedload transport rate is expanded as

Φ = Φ0 +AΦ1 exp[i(αξ −Ωt)] (42)

Φ can be expressed by Ψ,D, and R

Φ = Φ,Ψ0Ψ1ζb +Φ,D0D1 +Φ,R0 R1 (43)

where ζb is the ζ coordinate corresponding to η = B0;
Φ,Ψ0 = Φ,Ψ |Ψ=Ψ0 ; Φ,D0 = Φ,D |D=1; and Φ,R0 = Φ,R |R=1.
Substituting the above equations into the Exner equation,
the complex frequency Ω is obtained. The growth rate Ω

has a general functional form as

Ω = f (α,F ;C,µc) (44)

The imaginary part of Ω refers to the growth rate of the per-
turbation.

5 RESULTS AND DISCUSSION

Fig. 4 shows the neutral curves of the growth rate Ω as
a function of the wave number, α , and the Froude number,
F . The dashed line represents the neutral curve using the
formulation of Kovacs and Parker (1994). The solid line,
on the other hand, represents the neutral curve derived by
accounting the effect of the pressure gradient in Kovacs and
Parker’s original formulation.

Dunes form in the region where Ω > 0, whereas the per-
turbation tends to vanish in the region where Ω < 0. More-
over, the neutral curve represents the condition to which the
dunes neither grow nor decay.

Ω > 0

Ω < 0

α

F

Neutral curve without
pressure gradient

Neutral curve with
pressure gradient

Fig. 4. Instability diagram (C−1 = 20,µc = 0.84)

From the figure, accounting the effect of pressure gradi-
ent in the bedload formulation causes the unstable region
to expand. The region of dune formation expanded in the
range of larger wave number, α , and Froude number, F .
Results indicate that the critical Froude number and its cor-
responding dominant wave number becomes larger when
the effect of pressure gradient is taken into account on the
bedload formula.

6 CONCLUSION

A bedload transport equation including the effect of pres-
sure gradient is derived based on Kovacs and Parker’s for-
mulation. In order to account the effect of pressure gradi-
ent, a force balance on a sediment particle and the bedload
per unit area was performed. A linear stability analysis was
then performed utilizing the newly derived bedload trans-
port equation. The obtained result is then compared to the
instability diagram produced by using Kovacs and Parker
bedload transport formula.

Results show that accounting the pressure gradient
causes the region of dune formation to expand in the range
of large wavenumber and Froude number. It can be con-
sidered that because of the pressure gradient, the effect of
gravity in the bedload formula is reduced.
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