2016 年 8 月北海道豪雨による無加川の洪水災害

Flood Disaster Report of the Muka River caused by the August, 2016 Hokkaido Heavy Rain

〇早川 博(Hiroshi Hayakawa)	〇早川	正会員	北見工業大学工学部
渡邊康玄(Yasuharu Watanabe)	渡邊	正会員	北見工業大学工学部
川尻峻三(Shunzo Kawajiri)	川厉	正会員	北見工業大学工学部
川口貴之(Takayuki Kawaguchi	川口	正会員	北見工業大学工学部
宮森保紀(Yasunori Miyamori)	宮森	正会員	北見工業大学工学部

1. はじめに

2016年8月17日から23日の1週間に台風7号,11号, 9号が続けさまに北海道東部に上陸し,各地で大雨によ る河川の氾濫や土砂災害が発生した.上流域に年間降水 量相当の大雨が集中した常呂川流域の洪水災害について は,著者らが参加した土木学会災害調査団の速報版 ¹)に おいて,被災状況の概要を報告しているが,本報告では 常呂川上流域の畑作地帯を流下する無加川に注目し,河 道溢水による河道と農地の被災状況について,河道氾濫 計算などを参考にその要因解析を試みる.

2. 常呂川流域の概要と洪水の概況

常呂川流域は図-1(背景地図:国土地理院標準地図) に示すように三国山に源を発し,置戸町,訓子府町を経 て北見市で無加川と合流し,そのまま北見盆地を貫流し て,今回の洪水で大きな被害を受けた狭窄部の日吉地区 を流下し,オホーツク海に注ぐ幹川流路延長 120km、流 域面積 1,930km²の一級河川である.

常呂川流域にある雨量観測所は、北海道開発局と北海 道で15地点、気象庁アメダス6地点(St.16~St.21),JA きたみらい気象観測点7地点(St.22~St.28)の計28地点が 配置されている.また、緑線は主要な水位観測所の支配 流域を示し、雨量観測所が関係する各流域の範囲をティ ーセン分割し、その面積の荷重平均から流域平均雨量を 算定した.

今回の雨量分布は図-1(c)の8月20日には中流域にも 強い雨が分布しているものの,全体として上流域に雨が 偏って降っている.最上流域では7日間雨量が400mmを 超え,半月間雨量もこの地域の年間降水量に相当する 700mmに達している.その結果,上流の石北峠に至る国 道39号では周辺地形に大・中・小規模の斜面崩壊が至る とこで見られ,一時期,通行が規制された.

一方,下流域では雨が降り止んでからの河川の水位上 昇が顕著となり,住民の避難時期の判断を困難にさせた. 図-2 に示すように日吉地区にある太茶苗水位観測所では 長時間に渡り計画高水位を超え,本川堤防の一部越水や 流入支川の河道決壊も生じており,堤内の畑地や住宅地 に浸水し,更には冠水した道路で男性 1 名の死亡が確認 されている.

2016年8月17日~23日の流域平均7日間雨量は293mm, 15日~31日の半月間雨量が400mm,更に雨が集中した8 月17日と20日の日雨量は共に100mmであった.また, 既往洪水として大正11年(1922年)8月23日から25日に かけて北見地点で243mmの記録²⁾があり,今回と同じく

(a) 7日間雨量分布(2016/8/17~8/23)

(b) 総雨量(2016/8/15~8/31)

台風の通路となって農作物は殆ど押し流されて全滅し, 農地は河原と化した,との新聞記事がある.今回の豪雨 が集中した無加川の上流域の畑作地帯も,溢水した河道 流れによって農地の表土が流亡し,一面が河原の様相を 呈している.次章では,この無加川の河道及び農地の被 災状況について報告する.

3. 無加川上流域の河道及び農地の被災状況

図-1 の無加川上流の畑作地帯に位置する北見市温根湯 水位観測地点の河道断面形状は,無堤の単断面河道であ り,既往の災害復旧等で河道改修がなければ護岸工も敷 設されていない河道区間である.今回の豪雨災害では河 道溢水が至る箇所で発生して河道近傍の農地に流れ込み, 表土を剥ぎ取るだけでなく,その下層の基盤層まで大量 に洗掘してから河道に戻る被災個所も見られた.図-3 は 典型的な河道溢水による被災状況の3地点を示す.

3.1 花丘橋へ至る 18 号線の路面崩壊(地点①)

地点①は花丘橋の直上流右岸から溢水した氾濫流が隣 接する畑地を流れ,18号線で堰き止められた湛水痕跡が 写真-1(a)から判断できる.溢水個所は花丘橋直上流1か 所だけではなく,2015年7月撮影の背景写真には更に上 流の19号線が突き当たる地点の河道に砂州前縁深掘れ部 が形成されており,左岸山付きからの反転流がこの深掘 れ部に集中し、そのまま右岸を溢水したと考えられる.

また,写真-1(b)の路面崩壊は,埋設されていた排水施 設近傍の漏水が要因と考えられるが,越水による路肩, 法肩の浸食の痕跡もあり,排水施設の漏水がなくとも越 水による路面全面崩壊も考えられる.

3.2 平里橋下流の河道溢水(地点②)

地点②は平里橋下流の直線河道区間における溢水状況 である.写真-2(a)の空撮から平里橋下流 100m 付近から 溢水し始めた痕跡が確認できる.現地の状況は写真-2(b) に示す氾濫流が河岸を乗り上げて川岸の取り付け道路沿 いに流下し,路面や畑地の土砂を抉り取る状況が確認で きる.この区間は直線河道であり右岸方向に乗り越える 流れは生じ難いと考えられるが,平里橋直下の左岸に河 岸浸食が見られ,ここを水衝部として下流の右岸へ向か

(a) ドローン空撮

(b)路面崩壞個所 写真-1 無加川花丘橋地点①

図-3 無加川上流温根湯地区の調査位置図

う蛇行流が考えられる.しかしながら,平里橋上流も直 線河道が続き,この蛇行流を生起させる要因として交互 砂州の存在が想定され,後述する河床変動解析で検証す る.

3.3 平里橋上流の河岸浸食(地点③)

地点③は平里橋上流の蛇行区間の河岸浸食状況である. この区間は河岸に護岸工が敷設されていないため、容易 に河岸浸食が生じ,左岸方向への流路移行が顕著である. 赤線が河岸浸食と河床変動の範囲で,2015年7月時点の 流路(青線)と比較すると,洪水後は左岸へ100mも移動 した部分もある.また,右岸へ溢水し,樹林帯を回り込 みながら河道へ戻る流れが生じており,写真-3(b)にその 状況が見られる.浸食を受けた畑地の基盤構造は基岩

(軟岸)の上に大粒径の石礫や砂礫の堆積層が1m以上あ り、その上に畑地の耕作土が1m程度覆っている.今回の 溢水した氾濫流が流下した後は、表土が剥がされて砂礫 面が現れ、更にその下の礫層をも押し流して河道近傍に 軟岩が露出している.無加川は下流部で河道部の礫層が 流出して基岩の軟岩が露出する現象が問題となっており、 その対策が検討されている³.

4. 平里橋上・下流区間の河床変動解析

平里橋の上流区間は緩く蛇行し、下流は河道改修によって直線化された区間である。今回の豪雨によって蛇行 区間は蛇行の振幅をより増大させ、下流の直線区間でも 蛇行流の影響で河道溢水現象が生じている。この河床変 動の要因を探るべく、iRIC Nays2DH⁴⁾よる2次元河床変動 計算を適用し、洪水現象の再現を試みる。地形データは 国土地理院基盤地図情報の 5m メッシュ DEM を利用し, 計算に与えた流量は温根湯観測所が水位しか計測してい ないため,無加川の流量観測所である北光社を流末とす る流域を対象に星らが開発した複合流域を対象とした損

(a) ドローン空撮

(b)河道溢水個所 写真-2 無加川平里橋下流地点②

(a) ドローン空撮

(b) 畑地の表土流亡と基岸露出(左:上流から,中1:畑地の浸食最深部,中2:河道戻り部,右:基岸露出) 写真-3 無加川平里橋上流地点③

図-4 無加川の流量ハイドログラフの算出

失項含む貯留関数法 ⁵による流出解析を行い,無加川各 水位観測地点の流量を算出した.図-4 は算定した流量ハ イドログラフである.北光社観測所の流量(暫定値)の 流量ピークを計算値は良好に再現しているため,この算 定結果を計算流量に与える.なお,北光社観測所の流量 は洪水前の H-Q 式を準用した暫定値であることに注意さ れたい.

また,河床の粗度係数 n は温根湯の実測水位で同定す べきであるが,計測器の不調でデータの信頼性が低いた め,山地河川の粗度係数 n=0.030~0.035 を与えて解析す る.

計算期間は2016年8月17日0時~29日0時まで計算 し、図-5は流量の第1ピークから第4ピーク時点の水深 と流速ベクトルを示している.8月17日23時の流量の第 1ピーク、約200(m³/s)ではほぼ河道満杯状態で流れてい るが、下流の直線区間は右岸へ溢水している.まだ、流 路変動は生じていないが、第2ピークの20日22時では 上流の蛇行区間の流路変動が進み、下流区間も右岸へ溢 水した洪水流で右岸の畑地に流路が形成され始めている. これは、計算条件として河岸浸食を許しているために、 下流の直線区間でも流路変動が活発になり、第4ピーク の23日9時では、上流区間の流路が複数現れ、樹林帯を 回り込む流れも確認できる.しかしながら、実際よりそ の流れは遅く、現地のような河床低下は生じていない.

以上,実際の河床変動と比較すると差異もあり,今後 の更なる検討が不可欠である.

5. おわりに

2016 年 8 月の豪雨災害は常呂川流域では既往最大規模 の洪水災害であり,特に上流域の雨量は半月間に年間相 当の雨量を観測した.これまでの調査は河道を主に被災 調査を進めてきたが,山間地の渓流河川まで調査は進ん でいない.山間地では林道を雨の集水路として機能して いる側面もあり,林道の崩壊も懸念されるところである. 特に流木の発生源にもなり得るので,河川への負荷軽減 のためにも森林の維持管理が重要となろう.

参考文献

土木学会 2016 年 8 月北海道豪雨災害調査団:速報版, 2016. (http://committees.jsce.or.jp/report/system /files/hokkaido3.pdf).

(a) 第1ピーク時(8/1723時)

(b) 第2ピーク時(8/2022時)

(c) 第3ピーク時(8/2111時)

(d)第4ピーク時(8/239時)
図-5水深の経時変化

- 北海道開発局網走開発建設部:常呂川治水史, p.104, 1987.
- 3) 小泉・木下・鈴木: 無加川における河床低下対策につ いて-軟岩河床における覆礫の有効性-,第56回 (平成26年度) 北海道開発技術研究発表会,2015.
- 4) iRIC Project : Nays2DH user manual (<u>http://i-ric.org/ja/</u>).
- 対話式洪水流出計算マニュアル第2版:(財)北海道 河川防災研究センター(現 iRIC)・研究所編集・発 行,2005.