2016年北海道豪雨災害における空知川幾寅地区の

破堤・氾濫要因に関する研究

The study on 2016 August flood disaster and levee breach at the Sorachi River

北海道大学工学部環境社会工学科	○学生員	奥田醇 (Jun Okuda)
北海道大学大学院工学研究院 教授	フェロー	清水康行 (Yasuyuki Shimizu)
北海道大学大学院工学研究院 研究員	正会員	久加朋子 (Tomoko Kyuka)
株式会社 水工技研	正会員	石田義明 (Yoshiaki Ishida)
寒地土木研究所寒地河川チーム 研究員	正会員	岩崎理樹 (Toshiki Iwasaki)

1. 研究背景

2016年、北海道では 8/17~8/23 の間に 3 個の台風が 上陸し、それに続いて 8/29 から前線に伴う降雨を挟み、 8/30 に台風第 10 号が接近した. これにより, 道内では 北海道東部の日高山脈から大雪山系の東側を中心に記録 的な大雨となった. 道内の 225 ヶ所ある観測所のうち、 89ヶ所において最大月降水量を更新し、平年月降水量の 2~4 倍となった. 南富良野町幾寅の観測所では, 月降水 量がこれまでの最大値である 2011 年 9 月の 343mm を 大幅に上回る 625mm を観測した¹⁾. (図-1)

(札幌管区気象台より転載・一部加筆)

石狩川水系 空知川

図-2 西側から見た空知川の破堤・氾濫区域の様子 (北海道開発局報告資料より)

図-3 幾寅地区の破堤箇所(北海道開発局報告資料より)

空知川は、石狩川の支流の一つであり、一級河川に指 定されている.また、石狩川の支流の中で最も長く、広 い流域面積を持つ 2). 今回の豪雨により, 石狩川水系の 空知川幾寅地区(南富良野町)にて,2ヵ所の堤防が決 壊し,河川の氾濫が生じた(図-2). 2016 /8 /31 の 4:40 に 堤防の決壊が確認された 3)ことから, 空知川幾寅地区の 氾濫は深夜未明に始まったと考えられる.

幾寅地区の破堤箇所を図-3 に示す. 大勝橋から 500m ほど下流の地点と太平橋直上流地点の2か所で堤防が決 壊し,堤内地である農地や市街地を含む約 130ha 3) に浸 水が及んだ.破堤した区間は上流側・下流側でそれぞれ 約 300m, 150m とされている. 2 ヵ所ある決壊地点のうち、 大勝橋に近い方を上流側破堤,太平橋に近い方を下流側 破堤と呼ぶことにする.

破堤の要因は、①記録的豪雨により、水位が堤防より も高くなり,越水したこと、②河岸浸食・洗掘により堤 防の法尻が削られ、崩壊したことが考えられる 4. 本研 究では、はじめに北海道豪雨災害調査団が撮影した UAV の写真および現地調査データを元に、破堤の要因 を推定する. さらに, 数値解析を用いて, 上流側と下流 側における破堤時刻や越水要因を検証する.

図-4 破堤箇所と氾濫流の様子

図-5 流路変化の様子⁵⁾ (画像取得日…2014/6/25(航空写真), 2016/9/3(平面画像))

2. 現地データによる河床・流路変動, 破堤箇所の検証

2.1 想定される氾濫のメカニズム

幾寅地区における空知川本流は,氾濫後,市街地を北 に迂回するように蛇行した流路形状であった.

航空写真より推定される浸水の様子を図-4 に示す. まず上流側の破堤により、本川から溢れた水が氾濫流と なる(図-4,a). その後氾濫水は堤内地に広がり、下流側が 破堤して河道へ合流したと考えられる(図-4,b).

2.2 破堤箇所の流路移動

UAV で撮影した破堤箇所付近の平面画像を出水前の 航空写真に合わせ,青線と黄線で流路移動を表したもの を図-5 に示す.図-5 によると,上流側破堤地点の周辺で, 流路が左岸側に大きく移動し,堤防の水衝部の面積が広 がっていることが分かる.現地調査の写真や他移動開発 局の資料より,上流側破堤地点より上流と,下流側破堤 地点を含む太平橋上流約 400mの範囲に,低水護岸が出 水後も流出せず残存することが確認された(図-5,緑線).

2.3 上流側破堤地点の様子

図-6 に上流側破堤地点の決壊口上流側の様子を示す. 図-6 より,決壊口上流側は裏法が洗掘され流出した跡が 見られる.法面の植生の状況から,破堤地点より上流約 100mの範囲で越水の痕跡が確認された⁴⁾.なお,破堤地 点より下流側には明瞭な越水の痕跡が見られなかった.

上流側破堤地点の高水敷と植生の流出の状況を図-7 に示す.図-7より,護岸がある区間の高水敷には大きな 浸食の跡は見られなかったが,上流側破堤周辺の低水護

図-6 上流側破堤地点の高水敷と植生の流出

図-7 決壊口上流側の様子

図-8 下流側破堤箇所周辺の様子

岸が設置されていない区間の高水敷は、大きく浸食を受けほとんどの植生が消失していた.よって、河岸浸食・ 洗掘により堤防の法尻が削られ、崩壊したことが上流側 破堤の主要因だと推測される.

2.4 下流側破堤地点の様子

図-8 に下流側破堤地点を太平橋から撮影した写真(上)

と破堤地点を真上から撮影した写真(下)を示す.破堤地 点のすぐ下流に太平橋と橋に繋がる道路があり,道路の 盛り土と堤防で囲まれた水の溜まり易い地形が形成され ている.ここに上流側破堤地点から流れ込んだ氾濫水が 溜まり,水位が堤防よりも高くなり越水したと考えられ る.また図-8 より,低水護岸の破壊状況と,破堤地点よ り上流の高水敷に大きな損傷が見られないことから,河 道側の流れによる浸食ではなく,堤内地から河道へ向か う流れ(図-8 黄矢印)によって破堤したと推測される.

3. 数値解析による河床・流路変動,破堤の検証 3.1 数値解析の目的・条件

上述のように上流側の破堤要因としては、流路変動に よる堤防侵食が大きな要因と考えられるが, 越水や低水 護岸等がどのように影響したのかは不明である. そこで, 堤防侵食の有無と低水護岸による流路変動の効果を検討 することを目的として、iRIC・Nays2DH %を用いた二次 元流れと河床変動計算を行った.計算結果から得られる 破堤メカニズム,並びに時刻,箇所を現地調査結果等と 比較しながら、上流側の破堤が如何にして生じたかを検 討する.計算に用いた地形データは,横断測量データ(測 量日: 2016/1/26, 北海道開発局提供)を用いた. 計算格子 のサイズは平均して流下方向 20m、横断方向 3m とし、 マニング粗度係数は植生の多い自然河川において用いら れる値 ⁷として 0.040 と設定した. 河床材料の粒径は, 河床材料調査結果⁴⁾から60mmとした.計算流量には、 幾寅地区より下流にある金山ダムの流域に対する分布型 モデル(2 段タンクモデル)より算出した想定流量(北海道 開発局提供の暫定値)を用いた (図-9). 解析期間は 2016 年 8/30 の 0 時から 2016 年 8/31 の 23 時とした. また、 堤内地の一部の水の流入の有無によって氾濫したかを判 断する.表-1 に解析条件を示す. Case1 では, 堤防の位置 にあたる計算格子を固定床(河床変動なし)として、越 水による氾濫の規模となるかを調べる. Case2 は、堤防

ケース 固定床 移動床 (河床変動なし) (河床変動あり) 堤防 低水路, 高水敷 Case1 Case2 _ 格子全域 低水護岸のある高 Case3 堤防,低水路, 低水護岸のない高水敷 水敷 1600.00 1400.00 $Q_{max} = 1390.04 \ [m^3/s]$ 1200.00 1000.00 [s] 800.00 ع] ■ 600.00 400.00 200.00 0.00 図-9 幾寅地区想定流量(暫定値)⁸⁾

表-1 解析条件

を含む全ての計算格子を移動床とし、堤防に対する浸食 や洗掘による破堤・氾濫が起こるかを調べる.Case3 は、 現地調査にて確認された 2 ヶ所の低水護岸(図-6-b)と堤 防の位置にあたる計算格子を固定床(河床変動なし)とし て、流路の移動や高水敷浸食の抑制効果を調べる.

3.2 数値解析の結果

(1) 河床変動・流路の移動

解析終了時の河床変動のコンター図を図-10 に示す. 土砂の堆積により計算開始時から標高が上昇した範囲を 赤色で,洗掘や浸食により低下した範囲を青色で示して いる. Case1~Case3 に共通して,上流側破堤地点の対岸で 蛇行の内側にある固定砂州が発達し,蛇行外岸部が大き く浸食されたことが分かる(図-10の黄円). このことから, 流路が左岸側に移動し,堤防の水衝部が広がり,洗掘や 浸食を受ける範囲も大きくなったと考えられる.

(2) 氾濫の発生時刻・位置

実際に観測された痕跡水位と標高を示した縦断図,各 ケース解析終了時の左岸堤防における計算水位,堤防高 さを比較した結果を図-11 に示す. Case1 では, 8/31 の 0:40 に上流破堤区間よりやや上流にて越水が発生した. この地点で,越水の幅は最大 150m,越水の最大流量は 40m³/sであった. Case2 では, 8/30 の 23:50 に,上流側破 堤区間とほぼ同じ範囲で,法面の浸食による堤防高の低 下と越水・氾濫が始まった.計算終了時の堤防高さの変 化より,破堤の範囲は約 350m,氾濫流量は最大で 500m³/s であった.

図-10 河床変動コンター図

図-11 左岸痕跡水位と計算水位

Case3 では 8/31 の 0:50 に、上流側の破堤と氾濫の様子 は Case2 とほぼ同じだった. 破堤の範囲は 150m, 氾濫 流量は,最大で300m³/sであった.

(3)解析結果の考察と再現性

Casel では越水の位置が実際の破堤区間から若干上流 寄りで範囲が狭く、Case2 で確認された破堤範囲が、実 際の破堤区間とかなり近い.よって、上流側の破堤の主 な要因は,河岸浸食・洗掘により堤防が削られて崩壊し たことだと判断できる. Case3 の計算結果より、上流側破 堤地点より上流の水衝部となる箇所に設置されていた低 水護岸がある場合, 氾濫流量, 破堤範囲ともに Case2 よ り小さい値となった.このことから、低水護岸が洪水被害 を軽減したと考えられる.

また図-12 に, Case3 解析の開始時と終了時の水深分布 図を示す.水深分布図の水色~緑色の範囲が河道であり, 出水の前後で流路が左岸に移動している様子がわかる. 図-6と図-12を比較して、3.2.(1)で示した固定砂州の発 達と蛇行外岸部の浸食による流路の移動が, 解析結果か ら確認できる. このことから上流側破堤地点付近の流路 形状の変化を概ね再現できたといえる.

4. まとめ

本研究では、石狩川水系の空知川幾寅地区における流路 変動と破堤の状況を,現地データと再現計算により検証 した.以下に得られた知見を列挙する.

- ・上流側破堤地点では、河岸浸食・洗掘により堤防の法 尻が削られ、崩壊した可能性が示された.
- ・破場要因に着目して条件を設定し、数値解析を行った 結果,破堤時刻は 8/30 の 23:50 から 8/31 の 0:40 の間 で推移した. 実際に,太平橋付近では 8/31,午前2時 頃には堤内地で湛水が確認されており、上流側の破堤 時刻としてはおおよそ妥当なものであると推定される.
- ・数値解析と UAV の写真を比較すると、破堤地点付近 の流路形状の変化を概ね再現できた.
- ・数値解析より、低水護岸が破堤・氾濫に対し一定の抑 制効果をもつことが示された.

5. 謝辞

本研究は、土木学会水害調査報告団の調査一環として行 われたものである.公益社団法人河川財団より研究資金 の助成を受け、また多くの行政機関や組織・民間会社か らデータ提供などの便宜を図って頂いた.ご協力いただ いた皆様への謝意をここに示す.

参考文献 6.

- 1) 北海道開発局報告資料 「平成 28 年 8 月からの出 水状況について」
- 「石狩川水系空知川河川整備計画」 北海道開発局 2)
- 3) 北海道開発局 「平成 28 年台風第 10 号による出水 状況について」
- 4) 北海道開発局 空知川堤防調查委員会 「第一回堤防 調査委員会資料
- 5) 北海道豪雨災害調查団, UAV 撮影
- 6) iRIC ソフトウェア(http://i-ric.org/ja/)
- 7) 土木学会 「水理公式集」基礎水理編
- 北海道開発局「金山ダム[再現計算](分布型モデル)