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1. INTRODUCTION 

The oblique shear failure of reinforced concrete (RC) beams 

has long been known to be a brittle and catastrophic type of 

failure, while the problem of how shear failures occur in RC 

beams still remains, by and large, based on rather (semi-) 

empirical considerations.  

The fracture mechanics provides a possible theoretical 

approach of analyzing the oblique shear crack of RC beams. 

Employing a nonlinear concrete bridging model to consider 

nonlinear characteristics of the concrete cracking behavior, the 

Linear Elastic Fracture Mechanics (LEFM) is applicable for 

studying concrete cracking. In LEFM, a weight function 

concept which was firstly proposed by [1] possesses very 

strong advantages because the stress intensity factors for any 

arbitrary state of loading can be determined if the weight 

function of a given crack geometry is evaluated from a (perhaps 

simple) reference state of loading owing to load-independent 

characteristics of the weight function. As a further step, the 

crack opening profiles can be estimated following a weight 

function based integral equation proposed in [2]  

Unfortunately, until now, the number of fracture problems 

with a closed form analytical solution of weight function is 

very small. Virtual Crack Extension (VCE) technique, as 

suggested by [3, 4], provides an efficient finite element 

calculation of stress intensity factors and nodal weight 

functions. This technique has been employed in determining 

the 2-D Mode I weight functions in [5] and extended to 2-D 

mixed mode fracture problems in [6] through the use of 

symmetric mesh in the vicinity of crack tip. Obviously, the 

oblique shear crack of RC beams can be simply considered as 

2-D mixed mode fracture problems.  

For the failure mode of RC beams, one of the decisive 

factors is the size effect. [7, 8] concluded that the shear crack 

leading to failure occurs only in a beam with its shear span to 

depth ration from 2.5 to 8.0. Thus, weight functions for beam 

geometries with varying sizes are necessary, whereas the 

weight functions depend on the beam geometry. Therefore, this 

study is dedicate to presenting an approach of weight function 

determination for the shear cracked RC beams with varying 

shear span/beam depth ratio using only weight functions for 

beams with two shear span to beam depth ratios. 

 

2. FORMULATION 

Exploiting VCE technique in finite element method, the 

nodal weight functions for Mode I 2-D crack problems was 

represented in the displacement differentiation form according 

to the physical meaning of weight function. This technique was 

extended to mixed mode cracks, with combined tension and 

shear loading conditions, in [6] through the use of symmetric 

mesh in the crack tip neighborhood. The symmetric mesh 

provides the decoupling characteristic of the stress, strain, 

displacement and traction field parameters into Mode I and 

Mode II components with respect to x axis in the crack tip 

neighborhood as shown in Fig. 1, as a result, the stress intensity 

factors and nodal weight functions are separated into Mode I 

and Mode II components. To simulate the √r and 1/√r 

displacement and stress variation at the crack-tip vicinity for 

fracture problems, the symmetric mesh around the crack-tip is 

formed by assembling the degenerated quarter-point quadratic 

elements with √r displacement variation. The decoupled nodal 

weight functions for Mode I and Mode II at i's nodal location 

(xi, yi) with crack length (a) and inclination angle (β) can be 

represented in the displacement differentiation form as 

 

 (1a) 

 

 (1b) 

 

where hI(II)x and hI(II)y are Mode I and II weight function 

components along x and y axes, respectively. KI(II) are Mode I 

and II stress intensity factors for Mode I and II. UI(II)x and UI(II)y 

are the displacement components along the x and y axes for 

Mode I and II deformations. H is the effective modulus.  

By applying VCE technique with symmetric mesh in the 

crack tip neighborhood to the mixed mode fracture problems, 

the decoupled strain energy release rate GI for Mode I and GII 

for Mode II can be obtained from the decomposed 

displacement components {UI} and {UII}, the changes in global 

stiffness Δ[K] and decomposed nodal force components ΔfI and 

ΔfII as follows: 

 

 (2a) 

 

 (2b) 

 

The decouple nodal displacement derivatives, ∂UI(II)x(xi, yi, a, 

β) and ∂UI(II)y(xi, yi, a, β) for the entire structure, can be 

obtained through the following processes. To simplify the 

problem, the inclined angle β is considered as constant for a 

given crack. For a given β, the decoupled Mode I and Mode II 

displacement components can be expressed functionally as 

 

 (3) 

 

Applying the chain rule of differentiation with respect to the 

crack length (a) produces the following equation after 

rearrangement: 
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Fig. 1 Symmetric mesh in crack-tip neighborhood with 

respect to the global x axis 
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Since the stresses, strains and displacements of Mode I and 

Mode II are independent with each other and should satisfy the 

equilibrium equation and compatibility condition, we can 

obtain that 

 

 (5) 

 

where [K] is the matrix of global stiffness of original crack 

geometry. Taking total differentiation of Eq. (5) with respect to 

crack length and after rearranging, we have 

 

 (6) 

 

As the changes of the elemental stiffness for the entire 

structure and the decoupled nodal forces occur only in a few 

elements around the crack tip as a result of the VCE, d[K]/da 

and d{fI(II)}/da of Eq. (6) can be expressed as 

 

 (7a) 

 

 

 (7b) 

 

where △a is the VCE in direction collinear with the oblique 

crack. [ki] is elemental stiffness matrix. {fI(II)} are Mode I and II 

decoupled nodal forces. Nc is the number of elements around 

the crack tip. Nf is the number of crack-face elements with 

nodal perturbation of fI(II) as a result of VCE. 

The last two terms of Eq. (6) serve as the correction factors 

of changing the total displacement derivatives to partial 

displacement derivatives for the oblique crack, which are null 

for nodes without geometric changes as a result of VCE. For 

the VCE, which is collinear with an oblique crack, we have 

dy/da=0. 

Then, the nodal weight functions for Mode I and Mode II, 

with crack length (a) and inclination angle (β) at (xi, yi) 

locations, can be expressed as 

 

 (8a) 

 

 

 (8b) 

 

and  

 

 (9) 

 

where {UI(II)i} and Ni are the decoupled nodal displacements 

and shape function at i’s nodal location. det[J] is the 

determinant of Jacobian Matrix between local coordinates (ξ, η) 

and global coordinates (x, y) for isoparametric elements. 

 

3. RESULTS AND DISCUSSIONS 

This study is dedicated to provide some references for the 

fracture analysis of a shear crack in an RC beam. As reported in 

[6], the dependence of weight function on constraint conditions 

for a given crack geometry can be circumvented through 

combining all self-equilibrium forces, which include the 

applied surface tractions and the reaction force induced from 

the selected constraint conditions, with the nodal weight 

functions of different constraint conditions of the same crack 

geometry. The constraint conditions as shown in Fig. 2 are 

employed in all calculations in this study because the stress 

state under these constraint conditions is clarity and convenient 

for analyzing. 

 

3.1 Weight function for changing h/w ratios 

For an RC beam, the failure mode is strongly dependent on 

the shear span/beam depth (h/w) ratio. [7, 8] reported that the 

critical inclined shear crack leading to collapse typically occurs 

only in beams, with 2.5<h/w<8.0. Therefore, oblique edge 

crack geometries as shown in Fig. 2 with oblique angle β=45º, 

h2/h1=1.5, a/w=0.3, 0.4, 0.5, 0.6 and h/w=2.5, 5.0, 7.5 are 

employed for the detailed weight function calculation. 

With respect to the coordinates (x', y'), Fig. 3 shows the 

weight function components along the left face for the crack 

geometries with a/w=0.3, 0.4, 0.5, 0.6 and h/w=2.5, 5.0, 7.5 in 

relation to the distance away from the point A in Fig. 2. For a 

given group of a/w and h/w ratios, hIx' and hIIx' keep almost 

constant while hIy' and hIIy' decrease with an increase of the 

distance away from the point A. Specially, in all hIx' and hIIx', 

there is a consistent increase of absolute value with an increase 

of both a/w ratio and h/w ratio. For different a/w ratios, the 

constant values of hIx' and hIIx' increase linearly with the 

increase of h/w ratio, which means the hIx' and hIIx' for different 

a/w and h/w ratios can be obtained through linear interpolation 

of the presented results. In terms of hIy' and hIIy', they increase 

with respect to the increase of a/w ratio, nevertheless stay 

nearly unchanged for a fixed a/w ratio and changing h/w ratio. 

All the orderly trends represented in the curves of the weight 

function components can be interpreted theoretically as 

following. As shown in Fig. 4, for a 2-D crack geometry 

subjected to any arbitrary combined Mode I and Mode I load 

condition, the linear elastic stress field around a crack tip can 

be expressed with as simple analytical form as 

 

 

 

 

 (10) 

 

 

 

 

thus, for any point around the crack tip, θ and r are constants. 

Then, 

 

 

 (11) 

 

 

where [C] is a matrix of constants. According to the weight 

function concept, SIFs due to applied load is an integration of 

the applied load and the weight at their points of application. 
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Fig. 2 Finite Element Model for a cracked beam geometry 
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Fig. 3 Nodal weight functions left face 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the weight functions at a point on a crack geometry are 

equivalent to the SIFs if a unit concentrated load is applied on 

the point. Hence the hIx', hIIx' and hIy', hIIy' at a point on the left 

face can be obtained if a unit load is applied at the point along 

the x' and y' axes, respectively. In the elastic mechanics scale, it 

is easily imaginable that the stresses of any point around the 

crack-tip stay the same if a unit load applied along the x' axis 

moving from point A to F in Fig. 2 owing to the unchanged 

force lever from the crack-tip and vary linearly if the unit load 

applied along the y' axis. Similarly, following Eq. (11), the SIFs 

should experience the same trends manifested in the stresses. 

Therefore, hIx', hIIx' and hIy', hIIy' should be as shown in Fig. 3. 

Considering that loads are generally applied on the top face 

of an RC beam, weight functions on the top face are presented 

as well in this study. Regarding the point E which is closest 

point away from the crack-tip on the top face as the origin and 

defining the direction from F to D as the positive direction, 

plots of the weight function components for the top face for the 

oblique edge crack geometries with a/w=0.3, 0.4, 0.5, 0.6 and 

h/w=2.5, 5.0, 7.5 are shown in Fig. 5. In all hIx' and hIIx' curves, 

a consistent decrease from maximum to almost zero is observed 

from point F to E due to the decreasing force lever, while the 

hIy' and hIIy' stay at a certain plateau in most of F-E region and 

drop dramatically to almost zero just adjacent E. When the load 

applied location passes E, the force lever turns into zero and 

consequently both hIx', hIIx' and hIy', hIIy' remain almost zero in 

most of E-D region. Due to the increasing content of local 

disturbing in the stresses around the crack-tip as the applied 

load approaching the crack-tip, a slight fluctuation is observed 

in all curves within a small region adjacent the origin point E. 

The characteristics shown in the weight function curves for the 

top face can be interpreted similarly as for the left face. 

Therefore, if a group of hIx', hIIx' and hIy', hIIy' weight function 

components for the top face of a crack geometry with a span (h) 

wider than the disturbed region is given, the weight function 

components for a crack geometry with a small span or a larger 

span can be obtained through cutting from or extending the 

given weight function components, respectively. 

 

3.2 Weight function verification 

Considering the load independent characteristic of weight 

function, the nodal weight functions of the oblique edge crack 

geometries determined under the pure bending loads can be 

applied to the evaluation of stress intensity factors and the 

corresponding strain energy release rates for the mixed fracture 

mode under remote tension loads. With the weight functions on 

the left face of the oblique edge crack geometries with h/w=5.0 

and 0.3≤a/w≤0.6 from pure bending loads, the strain energy 

release rates evaluated following weight function method and J-

Integral method for the oblique edge crack elastic geometries 

under pure tension load conditions are listed in Table 1. The 

less than 1 percent discrepancies for all a/w ratios further 

confirm the applicability and reliability of the weight functions 

determination for mixed mode fracture problems through 

applying VCE technique with symmetric mesh around crack-tip. 
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Fig. 4 Elastic stress field at crack-tip 
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Fig. 5 Nodal weight functions on top face 

 

 

a/w 
Weight function 

method 
J-Integral method 

Discrepancy 

(%) 

0.3 3.990 3.976 -0.352 

0.4 6.502 6.487 -0.238 

0.5 11.776 11.746 -0.262 

0.6 24.372 24.295 -0.319 

 

4. CONCLUSIONS 

In this study, an efficient finite element method, where a 

VCE technique is coupled with symmetric mesh in the crack-

tip neighborhood, is used in evaluating both strain energy 

release rates and weight function for the oblique edge crack 

geometry. Specific findings and conclusions are summarized as 

follows: 

(1) The weight functions on the left face and top face are 

evaluated for the crack geometries with h/w=2.5~7.5 and 

a/w=0.3~0.6. In LEFM, for an elastic cracked geometry under 

any arbitrary load conditions, the stresses of any points around 

the crack-tip can be related to the Mode I and Mode II stress 

intensity factor with a constant matrix. In addition, the stresses 

vary linearly for a unit load moving along the boundaries of the 

cracked geometry. Thus, the weight functions should vary 

linearly along the boundaries as is observed in all weight 

functions along the left face and top face for the RC beam. 

Therefore, the weight functions along all boundaries of an RC 

beam with any shear span/beam depth ratio can be evaluated 

using the corresponding weight functions for two RC beams 

with different shear span/beam depth ratios.  

(2) For the same crack geometries, the weight functions 

obtained from pure bending load conditions are employed in 

evaluating the strain energy release rates due to pure tension 

loads according to the weight function concept. The less than 1% 

discrepancies between the normalized stress energy release 

rates from the weight function concept and J-Integral method 

confirms the reliability and applicability of evaluating weight 

functions using the VCE technique. 
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