可視化らせん積層複合材料の曲げ荷重-変位関係の考察

Study on the bending load - displacement relation of helicoidal laminate composites with transparent visualization

北海道大学大学院工学院	○学生員	森川和将 (Kazusa Morikawa)
北海道大学工学部	学生員	木村雄太 (Yuta Kimura)
北海道大学大学院工学研究院	正会員	松本高志 (Takashi Matsumoto)

1. 研究背景

積層繊維補強材料とは一般的に高強度,高弾性,耐熱 性に優れた繊維で樹脂などの母材を強化した複合材料で ある.積層繊維補強材料の特徴としては,一般に軽量か つ高強度で疲労特性や耐食性に優れることであり,土木 や航空など幅広い,分野で使用されている.しかしなが ら,これらの材料は,線形弾性的な挙動の後に,損傷や 層間剝離を伴いながら脆性的に破壊する場合があり,破 壊の予兆を得ることが難しいこと.

上述の問題を改善する基礎的な試みとして、本研究で は生体構造の模倣を検討する.一方向に整列した繊維の 層がらせん状に積層された構造は自然界ではよく見られ る構造であり、例えばシャコの前足の外殻に見られる. 捕食の際に相手に対して自分の前足で打撃を加える際に、 その衝撃が自分の体重の 1000 倍に達すると考えられて いる.しかし、積層繊維構造をらせん状に配置すること により、脆性的な破壊を生じずに衝撃を吸収する能力を 備えていると考えられている.

本研究では、まず,生体にみられるらせん状に積層さ れた繊維構造を透明な母材中に繊維をらせん状に積層す ることにより巨視的に可視化した模擬複合材料を作成し た.この可視化模擬複合材料の曲げ実験を行うことで, ひび割れの発生と進展過程を詳細に観察するとともに, 曲げ特性に及ぼす影響を検討している.本論文では,6 種類の積層構成が曲げ特性に及ぼす影響について報告し ている.

2. 実験手法

2.1. 概要

本研究では母材にエポキシ樹脂を使用する.

また,通常の積層繊維複合材料は繊維含有率が高く,繊 維直径も10µm 程度と小さいため,ひび割れの微視的な 観察には走査型電子顕微鏡などが不可欠であり,破壊に おけるひび割れ挙動を観察することが困難である.ここ では,透明かつ巨視化した模擬複合材料を作製し曲げ実 験を行う.具体的には,母材を透明なエポキシ樹脂とし, 繊維にはステンレスばね線を用いて作成した模擬複合材 料に対して,3 点曲げ載荷を行い破壊まで荷重を加える. 曲げ荷重と中央たわみ変位を取得し,6 種類の積層構成 の影響を検討する.

2.2. 模擬複合材料

模擬複合材料(以降,供試体)の寸法は,長さ200mm, 幅 40mm であり,高さは 5-7mm と供試体ごとに異なる (表-1).また,供試体作製に用いた母材と繊維の材料特 性を表-2 に示す.

供試体は6体作成した.積層構成の違いによる比較を 行うため直交積層,疑似等方積層がそれぞれ1種類,ら せん積層が3種類である.表-1に曲げ載荷試験に用い た供試体の積層構成を示す.繊維含有率は,図-1に示 すような斜線部で囲まれたエポキシ樹脂と繊維で構成さ れる複合部分についての繊維体積含有率と,複合部分と エポキシ樹脂のみの部分を合わせた供試体全体における 繊維体積含有率を示している.供試体をそれぞれ CP, QI, HL36-18, HL36-36, HL54-18, HL54-36と呼ぶ. CPは cross-ply、QIは quasi-isotropic、HL は helicoidal laminate をそれぞれ表している.らせん積層供試体 HL の表記は,例えば底面(引張側)の繊維配向角(以降,底面 角 36°,積層の刻み角 18°のものを HL36-18 と表してい る).繊維配向角は,図-2 に示す単層板座標系 1-2 の積 層板座標系 x-y に対する角度として定義される.

衣-1 供訊件傳成					
供試体名	積層構成	高さ(mm)	繊維含有率(全体)	繊維含有率(複合部分)	
СР	[90/180]4	5.7	0.086	0.110	
QI	[90/135/180/225] ₂	6.0	0.088	0.107	
HL36-18	[36/54/72/90/108/126/144/162]	6.3	0.106	0.167	
HL72-18	[72/90/108/126/144/162/180/198]	5.8	0.105	0.152	
HL36-36	[36/72/108/144/180/216/252/288]	6.3	0.099	0.156	
HL72-36	[72/108/144/180/216/252/288/324]	6.2	0.100	0.156	

表-1 供試体構成

母材	曲げ強度(MPa)	曲げ弾性率(MPa)	橫弾性率(MPa)	ポアソン比	比重
エポキシ樹脂 Z-1 50 分型	77	2193	818	0.34	1.16
エポキシ樹脂 CEP-5	115	3000	1119	0.34	1.15
ステンレスばね線	2200(引張強度)	197000	68500	0.3	8.0

図-2 単層板座標系

図-3 供試体作製方法

2.3. 作製方法

供試体の作製方法を図-3 に示す.まず,ステンレス バネ線を供試体寸法に合うよう切断し,所定の配向角方 向に間隙間隔 2mm で整列させて単層板を作製する.こ れを積層構成に従い積層させ層間を接着剤で固定し繊維 部を作製する.シリコン製の型枠に組み立てたステンレ スバネ線の繊維部を設置し,母材であるエポキシ樹脂を 所定の二液混合を行った後に型枠に流しこんで硬化させ る.硬化は室温(24℃程度)で行い,36時間ほどで脱型し た.またシリコン型枠は供試体の出来上がり寸法と同寸 法のアルミ板を用いて型枠を作製した.

2.4. 曲げ載荷実験

図-4 に曲げ載荷実験の支間割りを示す.載荷条件は3 点曲げとし,変位制御により載荷を行った.すべての供 試体において支点間距離は160mm、載荷速度は 2mm/min で載荷を行った.荷重と変位は載荷機のスト ロークより取得した. CP と QI は変位30mm,その他の 供試体は変位40mm に達した時点で載荷終了とした. なお,供試体の載荷点と支点部は,偏圧がかからないよ うに整形・研磨を施している.

実験結果と考察

3.1. 荷重-変位曲線

各供試体の積層構成のマップを図-5 に示す. 横軸を 底面角,縦軸を積層の刻み角とした.また全6供試体の 荷重-変位結果を図-6に示す.

荷重-変位曲線から,初期剛性,最初の荷重減時荷重, 最大荷重,最大荷重時変位,残留荷重を求めたものを表 -3 に示す.また,その結果をグラフにしたものを図-7 から図-11 に示す.

初期剛性は HL36-18 が最も大きい値, HL72-18 が最 も低い値となった.この2体の供試体は刻み角が18°と 同じだが底面角の違いによって倍近く値が変わった.ま た、OI、HL36-36、HL72-36 は近い値となった。HL36-36 と HL72-36 は刻み角が同じで底面角が違うが、18°刻 みの場合ほど初期剛性に差はみられなかった.次に、最 大荷重は CP が最も大きい値となり, HL72-18 が最も低 い値となった.HL36-18 で初期剛性は最大であったが最 大荷重は 0.369kN と比較的低い値となった. らせん積層 の供試体は全体として積層の刻み角が大きくなるほど最 大荷重が大きくなる傾向にある. また, CP, QI, HL36-36 は最初の荷重減時荷重と最大荷重に差が出でおり、 最大荷重まで荷重増加が見られる. 逆に HL36-18, HL72-18, HL72-36 は弾性範囲内で最大荷重を迎え, そ の後荷重が減少している.最大荷重時変位はQI,HL36-36 が 20mm 以上と比較的最大荷重に至るまで変形が大 きい結果となった.残留荷重と最大荷重の差は HL36-18 が最大, HL72-18 が最小となった. HL72-18 では, 大き な荷重落下はなく、何度か荷重の増減を繰り返しながら ほぼ水平に残留荷重が推移した.

らせん積層供試体のまとめとして、HL36-18 は初期剛 性と最大荷重の関係から硬くてもろい性質であるといえ る.HL72-18 は強度は低いが大きな荷重の落下がなかっ た.HL36-36 は初期剛性,最大荷重までに硬化域がある ことなどから QI のような等方性材料に近いと考えられ る.HL72-36 は最大荷重の値が CP に次いで大きく,ま た最大荷重時の変位も CP に近いことから直交積層に似 た挙動を示した.

				建	
供訊件	初旁回注(KIN/IIIII)	取初00间里顾时间里(KIN)	取八何里(KIN)	取八何里时炙位(11111)	/戊亩何里(KIN)
СР	4462	0.609	0.683	17.9	0.609
QI	3148	0.434	0.485	21.7	0.330
HL36-18	4565	0.369	0.369	9.29	0.218
HL72-18	2355	0.154	0.154	7.02	0.146
HL36-36	3874	0.239	0.467	21.94	0.432
HL72-36	3387	0.568	0.568	16.76	0.487

90

表-3 荷重-変位実験値

図-6 荷重-変位曲線

表	-4 エネルギー	エネルギー吸収量(kN・mm/mm²)		
供試体名	S1	S2	S2/S1	

	51	5	
СР	0.033134	0.031095	0.93
QI	0.029987	0.011277	0.37
HL36-18	0.007568	0.017115	2.26
HL36-36	0.026374	0.014291	0.54
HL72-18	0.002748	0.013608	4.95
HL72-36	0.021911	0.025081	1.14

3.2. 曲げ靱性

荷重-変位曲線より積層構成の違いによるエネルギー 吸収量の考察を行う. エネルギー吸収量は原点から最大 荷重点(Pmax)までの吸収量(以降, S1)と、最大荷重点か ら変位 30mm の時点までの吸収量(以降, S2)を求めた. 表-4に値を示す. それぞれのグラフを図-12, 図-13に示 す.また、二つのエネルギー吸収量の比率を求めたもの を図-14に示す.エネルギー吸収量は供試体ごとに高さ が異なるため供試体断面積で割り,正規化した.

S1 に関して, CP が最も値が大きく, HL72-18 が最も 値が小さくなった. 全体として積層の刻み角が細かくな るほど値が小さくなる傾向がある.また、同じ刻み角だ と底面角が90°に近いほど値が小さくなる傾向がある. S2に関して、CPが最も値が大きく、QIが最も値が小 さくなった. また, S1 と比較して CP, HL72-36 の値は ほぼ変化がなかった. OI, HL36-36 は減少した. HL36-18, HL72-18 は増加した. 全体として S1 の結果程底面 角の違いによる値の差は見られなかった.

S1とS2の比率で、CP、QI、HL36-36、HL72-36は1 に近い値, HL36-18, HL72-18は1を大きく上回った. まとめとして, HL36-18, HL72-18, はS1よりもS2の 方が大きい値となった. 一方 QI, HL36-36 は S1 の方が S2 よりも大きい値となった.これらの結果から積層の 刻み角が細かい時の方が最大荷重低下後のエネルギー吸 収量が大きい場合が多く, 靭性が高くなる傾向にあると いえる. また, S1 と S2 の比率は, HL72-18 が最も大き な値となった. この供試体6体の中でHL72-18は最大 荷重で破断した後も曲げに対して靭性が最も大きいと考 えられる.

まとめ 4.

本研究では、繊維複合材料に着目し、直交積層、疑似 等方積層、そして積層構成をらせん状に配置した供試体 を作製した.そして破壊メカニズムを解明することを目 的に載荷実験を行った.また、本研究では主に荷重-変 位曲線の関係を考察した. その結果, 積層の刻み角がら せんに近づくほど最大荷重低下後のエネルギー吸収量が 大きい場合が多く, 靭性が高くなる傾向にあるとわかっ た. また、今回作製した供試体の中では S1 と S2 の比 率の関係から HL72-18 が最大荷重で破断した後も曲げ に対する靭性が最も大きいと考えられるという結論とな った.しかし、今回作製した供試体では積層構成の違い による比較が十分に行うことができなかった.よって今 後は、さらに細かい刻み角のものやさまざまな底面角の 供試体を作製し,実験を行う必要がある.

参考文献

1)技術報告書 (Z-1/50 分型):日新レジン株式会社技術部, 2015

2)D.ハル, T.W.クライン: 複合材料入門, ケンブリッジ 大学出版, 1966.

3) 八尋英恵:らせん積層複合材料の曲げひび割れ挙動の 可視化実験, 第72号土木学会北海道支部論文報告集, A-21, 2015