A - 1 0

UD プリプレグを用いたらせん積層構成 CFRP の作製精度と材料特性の考察

Fabrication accuracy and material properties of spiral-laminated CFRP specimens made of UD prepreg

北海道大学工学系技術センター技術部	○正会員	近藤健太	(Kenta Kondo)
北海道大学大学院工学研究院	正会員	松本高志	(Takashi Matsumoto)

1. まえがき

土木・建築の分野において、構造物の耐久性、維持管理 性を向上させることは重大な課題である。このような背景 の下、炭素繊維強化ポリマー(Carbon Fiber Reinforced Polymer、以下、CFRP と称す)は近年高耐久性を有する 構造材料の一つとして着目されている。CFRP は炭素繊維 を樹脂で固めたものであり、炭素繊維複合材料として様々 な分野において使用されている。その特性として、高強 度・高剛性、軽量、優れた耐腐食性、等が挙げられる。こ れらは従来の構造材料である鋼材およびコンクリートに はない材料特性であり、CFRP は構造物の更なる耐久化を 達成できる構造材料として研究されている。

また一方で、バイオミメティクスの応用も近年注目が高 まっている技術分野の一つである。生物が持つ優れた機能 や構造等を模倣することにより、工学等分野において今日 まで新たに多くの技術開発や製品の実用化が進められて いる。

その中でも、本研究では生物界の中でも最も強固な組織 の一つであるとされるシャコの前足に着目した。シャコは 捕食のために貝類の殻をたたき割る際、自重の1,000倍以 上もの打撃の反力に耐えうる強靭な性質の前足を持って いる。この強靭さを実現している組織は、シャコの前足の 表面が持つらせん状のキチン繊維であることが米カリフ オルニア大学教授らのチームによって発見された¹⁾。キチ ン繊維とは、甲殻類の外骨格によく見られる平行に並んだ 繊維であるが、シャコの場合ではその繊維がらせん状に回 転しながら積層されており、その独特な構造が甲殻のひび 割れ防止の要因と考えられている。図-1 に電子顕微鏡を 用いて観察されたシャコ前足部の繊維構造¹⁾を示す。

以上の背景より、本論文はらせん積層構成及び比較の積 層構成について CFRP 試料を作製し、作製した試料につ いて実施した 3 点曲げ載荷実験結果について報告するも のである。また、作製した試料については JIS 規格に基づ き品質を検討し、試料の作製精度である板厚のばらつきが 試料の材料特性に与える影響について検討することを目 的とする。

2. CFRP 試料の作製工程

らせん積層構造 CFRP 試料の作製にあたり、三菱レイ ヨン社製のプリプレグを使用した。プリプレグとは、炭素 繊維基材に着色剤、充填材等を適正な割合で混合した樹脂 を含侵させたシート状のもので、かつ 硬化させる前のもの である。試料作製時は、冷凍庫にて保存しているプリプレ グを取り出し、解凍のため常温で半日から一日静置してか ら使用する。プリプレグには繊維の織り方や材料によって いくつかの種類に分けられるが、本論文ではシャコのキチ

図-1 シャコ前足部の繊維構造 1)

ン繊維構造を再現するため、カーボン UD(Uni Directional)プリプレグを採用した。これは炭素繊維を一 方向にのみ揃えたのもので、適当な寸法に裁断したプリプ レグを各積層構成に応じた配向角度に積層して使用する。 含侵された樹脂には 130℃ 硬化型のマトリックス樹脂が 使用されている。

本研究では、繊維方向による積層パターンを 4 種類 ([0/90]₂₀、[0/36/72…144]₈、[0/18/36…162]₄、[0/9/18/27 …171]₂)とし、それぞれプリプレグを合計 40 枚積層して 試料を作製した。以下に CFRP 試料の作製工程を示す。

まず、解凍後のプリプレグをカッターで 290×290mm([0/90]20のみ200×200mm)の寸法で積層パタ ーンごとに40枚ずつ切り出す。切り出したプリプレグを 繊維方向に対して所定の配向角度をつけた上で貼り合わ せる。これを切り出したプリプレグの枚数分繰り返す。

本研究では積層したプリプレグの成形方法として、JIS 規格²⁾に基づいたオートクレーブ成形法を用いた。

加熱成形時、積層物および副資材は真空引きした状態の まま炉に設置する。炉の温度設定は2段昇温とする。硬化 スケジュールの1段階目は80°Cで1時間定常、2段階目 は130°Cで2時間定常とした。昇温速度はいずれの段階 も1°C/minとした。

加熱後の積層物は半日間放置後炉から取り出し、試料作 製のため180×40mmの寸法に切削した。このとき積層板 の周囲はトリミングした後、中央付近から試料を作製した。 裁断、切削には精密タレット形立フライス盤(VHR-SD)を 用いた。図-2 に加熱成形後の CFRP、作製した試料の積 層物内での位置を示す。1 枚の CFRP 積層物から試料 3 点を作製し、積層物内中央から作製した試料をb、その両 隣から作製した試料をそれぞれa、cと名付けた。

本研究では先述した各積層構成あたり3体ずつ作製し、 合計12体とした。表-1に作製した試料の種別、寸法を示 す。厚さt1、t5は曲げ実験時の支点、t3は載荷点、t2、 t4は載荷点と支点の中点におけるものである。

試料名	積層構成	積層枚数	幅(mm)	長さ(mm)	tı(mm)	t2(mm)	t3(mm)	t4(mm)	t5(mm)	平均厚さ(mm)
CP-a	[0/90] ₂₀	40	40.00	180.00	4.47	4.66	4.67	4.64	4.55	4.598
CP-b	[0/90] ₂₀	40	40.00	180.00	4.68	4.55	4.62	4.67	4.79	4.662
CP-c	[0/90] ₂₀	40	40.10	180.00	4.62	4.62	4.64	4.65	4.6	4.626
SH36-a	[0/36/72144] ₈	40	40.00	180.00	4.59	4.64	4.67	4.59	4.62	4.622
SH36-b	[0/36/72144] ₈	40	40.00	180.00	4.65	4.72	4.71	4.71	4.56	4.670
SH36-c	[0/36/72144] ₈	40	40.00	180.00	4.58	4.71	4.73	4.67	4.75	4.688
SH18-a	[0/18/36162] ₄	40	40.10	180.00	4.88	4.81	4.69	4.76	4.81	4.790
SH18-b	[0/18/36162] ₄	40	40.00	180.00	4.87	4.73	4.69	4.74	4.82	4.770
SH18-c	[0/18/36162] ₄	40	40.00	180.10	4.76	4.61	4.69	4.66	4.82	4.708
SH9-a	[0/9/18/27171] ₂	40	40.00	180.10	4.78	4.69	4.69	4.71	4.83	4.740
SH9-b	[0/9/18/27171]2	40	40.00	180.00	4.76	4.65	4.69	4.67	4.76	4.706
SH9-c	[0/9/18/27171]2	40	40.00	180.10	4.84	4.64	4.71	4.63	4.79	4.722

表-1 CFRP 試料の寸法、積層構成

図-2 作製した CFRP

図-3 CFRP 試料

図-4 3点曲げ載荷実験の様子

3. 3 点曲げ載荷実験

3.1 載荷方法

載荷実験時、各試料下面の載荷点付近にゲージ長 5mm の単軸ひずみゲージを長軸方向に貼り付けた。各試料の長 軸方向を繊維方向 0°とし、載荷実験時は圧縮面での最外 層を繊維方向 0°で統一した。図・3 に切削後の完成試料を 示す。載荷実験装置にはオートグラフ精密万能試験機 (SHIMADZU AG-I 250kN)、荷重の計測にはロードセル (SHIMADZU SFL-250kNAG)を使用した。試料はそれぞ れ両短辺側の単純支持とし、支間長 150mm となるように 設置した。載荷実験時の様子を図・4 に示す。本実験装置 の載荷荷重は 0kN から実験開始とし、変位速度は 2mm/min とし、最大変位 30mm に達するか終局状態をも って実験終了とした。サンプリングレート 1Hz にて荷重、 変位、ひずみの記録を行った。

3.2 材料特性の理論値算定方法

作製した試料の3点曲げ載荷実験における、JIS規格³⁾を基に梁理論を用いた圧縮・引張縁での曲げ破壊強さ又は 曲げ強さの算定方法を述べる。曲げ破壊における最大応力 は載荷点における中立軸から最も遠い縁において生じる。 これを縁端応力といい、 σ_b と表したとき、下記の(1)式で 表わされる。

$$\sigma_{\rm b} = \frac{3P_b L}{2bh^2} \tag{1}$$

ここに、 σ_b : 曲げ破壊強さ又は曲げ強さ(MPa)、 P_b :破壊時荷重又は最大荷重(N)、L:支点間距離(mm)、b:試験片の幅(mm)、h:試験片の厚さ(mm)である。

表-2 3点曲げ実験結果

試料名	耐荷重(kN)	最大応力(MPa)	弾性率(GPa)
CP(a)	3.662	944.511	66.467
CP(b)	3.122	822.757	71.671
CP(c)	3.456	902.943	67.016
SH36(a)	3.044	785.115	50.271
SH36(b)	2.758	705.295	47.426
SH36(c)	2.950	741.690	47.334
SH18(a)	2.181	557.741	51.099
SH18(b)	2.135	545.977	57.140
SH18(c)	2.461	613.995	88.083
SH9(a)	2.017	515.802	47.672
SH9(b)	2.240	572.829	49.605
SH9(c)	2.061	522.587	50.267

4. 実験結果

表・2 に材料実験の結果を示す。表中の弾性率は、載荷 実験時の応力・ひずみ関係における弾性領域内より、最小 二乗法を用いて評価した値を示している。また、各載荷実 験における応力・ひずみ曲線を図・5 に示す。図は積層構成 ごとのグラフとなっている。なお試料の破壊は、全て試料 区間内で生じており、支点での滑り等は観察されていない。

全ての試料において一度目の応力低下の後、再び応力上 昇が確認された。また破壊形態について、試料 CP に関し て、圧縮面最外層においての圧縮破壊が起こった後、引張 側の層に向かっての亀裂の進行が観察された。試料 SH36、 SH18、SH9 に関して、圧縮側から引張側への亀裂の進行 はあまり確認されず、圧縮破壊の亀裂から派生した層間せ ん断破壊および引張面外層の剥離が見られた。

表-3 外形寸法の許容差4)

表-5 平面度合いの許容差4)

₹ I (()/手*)		
	— 舟	殳品
外形寸法	許容	§差
	公差	最大値
3mm以上5mm未満	±10%	± 0.4 mm

表・6 作製試料の許容差と実測値との比較

			ы т <i>.</i>	<u> </u>			1		
- 5.61.6								平面度合い	
試料名	長	さ	陥		厚さ				
	許容差(mm)	実測値(mm)	許容差(mm)	実測値(mm)	許容差(mm)	実測値(mm)	許容差(mm)	実測値(mm)	
CP-a		±0		±0		-0.22		0.16	
CP-b		±0		<u>±0</u>		-0.14		0.25	
CP-c		±0		+0.10		-0.09		0.18	
SH36-a		±0		±0		-0.10		0.04	
SH36-b		±0		±0		-0.13		0.04	
SH36-c	180+2.5	±0	40+1.5	±0	4 60+0 4	-0.11	0.32	0.15	
SH18-a	180±2.5	±0	40±1.5	+0.10	4.09±0.4	+0.19	0.32	0.15	
SH18-b		±0		±0		+0.18		0.07	
SH18-c		+0.1		±0		+0.13		0.27	
SH9-a		+0.10		<u>±</u> 0		+0.14		0.08	
SH9-b		<u>±0</u>		±0		+0.07]	0.21	
SH9-c		+0.10		±0		+0.15		0.26	

5. 考察

5.1 作製試料の品質

本研究では作製後の試料を JIS B 7507、JIS B 7524、 JIS B 7526 規格にそれぞれ準じたノギス、すきまゲージ、 直角定規を用いて試料の寸法、平面度合いを計測した。表 -3 に形材の外形寸法の許容差、表-4 に形材の板厚寸法の 許容差、表-5 に平面度合いの許容差を示す。これは繊維 強化プラスチックの引抜材について JIS 規格によって規 定された日本工業規格⁴⁾である。表-6 に作製した試料の寸 法許容差および平面度合いの許容差、および実測値との比 較を示す。本研究で作製した CFRP 試料については、全 ての試料について上記の許容差の規格をそれぞれ満たす ものとなっている。

5.2 板厚の違いが材料特性に与える影響

本研究では試料の作製課程において完成試料の厚さが 可能な限り均一となるよう、以下の事項に配慮して試料を 作製している。①積層物への加圧作業の際、複数の万力を 使用しての加圧は積層物への局所的に圧力がかかる可能 性がある。そのため本研究では金属製の加圧器を作製し、 加えて厚さ2mmのステンレス製の板を複数枚重ねて使用 することで対応した。②フライス盤を使用しての積層板切 削の際、完成試料の縁全体の繊維が解放され広がり、試料 にバリが発生することがある。そのため切削作業の際、硬 度が高いゴム板で試料を挟みこんだ上で固定し、全体を切 削することでバリの発生を最小限に抑えた。また、切削時 にフライス盤に取り付けて用いるフラットエンドミルに

土木学会北海道支部 論文報告集

表-7 板厚の標準偏差と実験結果

平成28年度

試料名	厚さ(mm)	板厚の標準偏差	最大応力(MPa)	弾性率(GPa)
CP-a	4.598	0.077	944.511	66.467
CP-b	4.662	0.079	822.757	71.671
CP-c	4.626	0.017	902.943	67.016
SH36-a	4.622	0.031	785.115	50.271
SH36-b	4.670	0.060	705.295	47.426
SH36-c	4.688	0.060	741.690	47.334
SH18-a	4.790	0.063	557.741	51.099
SH18-b	4.770	0.065	545.977	57.140
SH18-c	4.708	0.074	613.995	88.083
SH9-a	4.740	0.056	515.802	47.672
SH9-b	4.706	0.046	572.829	49.605
SH9-c	4.722	0.082	522.587	50.267

ついて、CFRP 積層物に対しての使用は刃の消耗が激しい ため、切削条件等に関わらず1本のエンドミルあたり FRP 積層板2枚分の切削を行うこととし、以降は新しいものに 交換し作業を行った。

また作製した試料の外観について、載荷実験を行う上で 問題となる欠陥は生じていないが、試料表面に硬化した樹 脂が万遍無く残っているために微小な凹凸が確認できる。 その原因として、本研究の成形工程が考えられる。現在の 成形方法では加熱成形時にはブリーダーファブリックが リリースフィルムを介して積層物に接触しているため、余 剰な樹脂が生地の表面の粗さに合わせて硬化しているも のと考えられる。今回の研究で作製した試料は全て許容差 の規格を満たすものであったが、今後の試料作製において 表面の樹脂の処理方法を検討することで、試料の表面が平 滑で寸法公差がより小さい試料を作製できると考えられ る。

表-7 に作製した試料の同一試料内での板厚の平均、標 準偏差と実験結果を示す。板厚の計測点は試料の載荷点、 支点、載荷点と支点との中点の計5箇所である。各試料の 板厚には標準偏差0.017~0.082のばらつきが見られた。 載荷実験結果による最大応力値と試料の板厚の平均を参 照すると、板厚が平均的に薄い試料について、最大応力が 比較的高い値を示す傾向が見られた。図-6 に最大応力が 比較的高い値を示す傾向が見られた。図-6 に最大応力が 試料の板厚の平均の関係を示す。同一の積層枚数であるに もかかわらず、板厚の差が生じているということは、すな わちプリプレグに含侵された樹脂による層間の接着力に 差が生じていると考えられる。よって板厚が薄くなったこ とに伴い繊維組織の強度が高まり、材料実験結果に影響が 及んだと推察される。

また試料内での板厚のばらつきについて、標準偏差で示した板厚のばらつきと最大応力、弾性率とを参照すると、ばらつきが大きい試料 CP-a、CP-b、SH18-cの実験結果

として、最大応力や弾性率が極端に大きい値を示したり、 反対に小さい値を示したりするなど、比較的均整が取れて いる他の試料 CP-c、SH18-a、SH18-b と異なる実験結果 となった。原因として、らせん積層構造や同一試料内の板 厚の違いによって応力集中部とその強度がばらついたこ とが考えられる。全てのらせん積層構造の試料について、 曲げ試験における圧縮破壊の亀裂は載荷点からは外れた 位置に発生している。また上記の通り板厚にもばらつきが 生じていることから、試料によって曲げ実験時の応力集中 部が異なる位置にあり、その板厚の違いから最大応力値や 弾性率の結果にも影響したものと考えられる。

第73号

6. あとがき

本研究では、らせん積層構成を有した CFRP 試料を作 製し、それを用いた3点曲げ載荷実験を行うとともに、板 厚の違いが試料の材料特性に与える影響を検討したもの である。得られた知見を以下に示す。

- (1) 作製した試料において、板厚に標準偏差 0.017~ 0.082のばらつきが見られ、また平面度合いについて も最大で 0.27mm 確認された。これは成形もしくは 切削の過程の一部で生じたものと考えられる。また板 厚の均整が取れていない試料について、最大応力やヤ ング率が大きくばらつく場合があるということが確 認された。今後の試料作製においては、原因として考 えられる項目について再度検討し、作製する試料を外 形寸法や板厚の公差を可能な限り小さくすることで、 ばらつきの少ない実験結果が得られると考えられる。
- (2) 今後の研究においてはより多くの種類の試料を作製し、実験方法についても載荷方法の検討や新たに耐衝 撃実験等を行い、技術の実用面についても構想を練る。

参考文献

 L. K. Grunenfelder, N. Suksangpanya, C.Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans –Lutter odt, S. R. Nutt, P. Zavattieri & D. Kisailus:Bio-inspired impact-resistant composites, ActaBiomaterialia, Vol. 10 No. 9 pp. 3997-4008, 2014.

2)日本規格協会 炭素繊維強化プラスチック試料の作製 方法 JIS K 7072-1991 平成3年11月1日制定.
3)日本規格協会 繊維強化プラスチック・曲げ特性の求め 方 JIS K 7017-1999 平成11年10月20日制定.
4)日本規格協会 繊維強化プラスチック引抜材 JIS K7015-2013 平成25年4月22日改正.