Nacl 溶液の電気分解時に発生する微細気泡流解析

Geometrical and kinematic characteristics of electrolytically-generated bubbles

北海道大学大学院工学研究院 〇学生員 北海道大学准教授大学院工学研究院 正会員 北海道大学准教授大学院工学研究院 非会員

○学生員 小柳津遥陽 (Haruhi Oyaizu)
正会員 渡部靖憲 (Yasunori Watanabe)
非会員 佐藤久 (Hisashi Satoh)

1. はじめに

気泡群の液中の上昇に伴い形成される気泡噴流は, 海岸工学, 医学, 生物学など広域にわたり非常に重要な 現象として認識されている.工学的利用の一例として, 電気分解により発生させた気泡噴流を用いた曝気装置を 考える.この装置における処理効率は,発生する気泡径 分布・並びに気泡の上昇に伴い発達する液相の流体運動 に支配される一方で、混相流についての実験や解析の技 術的な困難さの為,十分な知識は未だに得られていない. 本研究では,装置の簡易モデルとして, Nacl 溶液の電気 分解により発生させた気泡噴流を, 高速ビデオカメラに よる LED バックライト法で撮影し, Level-set 法による画 像解析(Chan and Vase2002)¹⁾を行いその気泡径分布の電 流密度依存を調査した. また流速計測法としてよく知 られる PIV と PTV のハイブリッド型流速計測法である SRPIV(Adrian 1995)²⁾ により個々の気泡の上昇速度を調 査し, 電気分解により発生させた気泡噴流の特徴を明ら かにした.

2. 実験方法

実験には高さ 650mm,幅 540mm,奥行 270mm の水槽を 用いた(図 1). 気泡噴流は水深 360mm の静水中に,陽極, 陰極にそれぞれ直径 10mm 幅約 150mm の銅, アルミニ ウムを固定し, 0.2%塩化ナトリウム溶液を異なる電流密 度(0.1057~0.2116A/cm²)で電気分解を行い発生させた水 素により形成される.高速ビデオカメラと対面するよう 水槽背部から LED パネルを設置し,気泡のバックライ ト画像をフレームレート 250fps,シャッター速度 1/500s で撮影した.またレンズにはテレセントリックレンズを 用いることで,被写体光学像サイズの,奥行き方向気泡 位置の影響を無視することが可能である.

3. 解析方法

(1) 気泡径計測

気泡径の計測には Level-set 法を用いた気泡のエッジ 抽出(Chan and Vase 2002)¹⁾ を行った.図2で示すように 撮影した元画像の2cm×3cmのエリアを検査領域とし, 気泡のエッジを特定した.エッジ内の面積は理想円形状 を成すという仮定の下,等価気泡径*d*を推定した.奥行 き方向への気泡の重なりの除去には,エッジ内の領域の へん平率*f*をしきい値として用いた(式1).ここで a と

$$f = 1 - \frac{b}{a} \tag{1}$$

b はそれぞれ楕円の長辺と短辺である.また,解像し得る最小の気泡径は0.1mmとしている.

図1 実験装置

図2 Level-Set 法を用いた気泡のエッジ抽出.左:元画像,右:処理画像

図3 SRPIV による気泡流速測定

(2) 気泡上昇速度計測

Particle Image Velocimetry(PIV)とParticle Tracking Velocimetry(PTV)のハイブリッド流速計測方法である Super-Resolution Particle Image Velocimetry(SRPIV)²⁾によ り個々の気泡の上昇速度を計測した.この計測法では, まずは標準的な相互相関法 PIV によって対象領域内の パターンマッチングベースの平均流速分布を測定する. その後,個々の気泡は PIV で得られた平均流速に近い 流速で移流されるという仮定の下,次時刻のフレーム

で移動後の粒子が存在する領域を求める. この気泡軌道 は3つの連続する時刻を用いる最小加速度原理に基づき 決定する.得られた全気泡の動的・幾何学的情報は, 個々の気泡の抗力係数を算出するのに用いた.図3は SRPIV により推定された個々の気泡の流速の一例を示 しており、気泡は典型的な水平方向への小変動を伴いな がら上昇する様子が確認できる.

4. 結果 と考察

図4は単位面積あたりの無次元気泡径分布を示してお り, 実スケールにおいて 0.30mm 付近にピーク値を取る. 気泡径の分布関数は対数正規分布に近い分布を取り

(図 5)、平均気泡径は電流密度の上昇に伴い増大する (0.1057A/cm²:0.3508mm, ことを確認した 0.1586A/cm²:0.3746mm, 0.2116A/cm²:0.4258mm). 平均 気泡上昇速度は気泡径の増大と共に増加するといった傾 向が確認できた(図 6). 気泡上昇速度並びに気泡径を粒 子 Reynolds 数 Ren および抗力係数 Cd で整理し・先行研 究の気泡抗力係数モデルと比較したところ本研究の結果 はこれまでのどのモデルとも異なる傾向を示した(図 7). これは現時点では未解明ながらも、界面活性効果やマラ ンゴニ効果等によるものであると推測している. また, 高ボイド率の気泡噴流における気泡の集団効果の影響も 考え、今後さらに研究を進める必要がある.

各気泡径における平均気泡上昇速度(15A) 図 6

図7 Cd と Rep の先行研究³⁾⁴⁾との比較

5. まとめ

Nacl 溶液の電気分解により発生させた微細気泡噴流 を, 高速ビデオカメラを用いたバックライト法で撮影し, Level-set 法を用いた画像解析により気泡径を測定するこ とで、気泡噴流を構成する気泡群の径分布及び平均気泡 径を明らかにした. さらに, 流速計測法である SRPIV により個々の気泡の流速を測定し、抗力係数並びに粒子 レイノルズ数の関係を明らかにした. 抗力係数は先行の どのモデルとも異なる傾向を示し、現時点では原因は特 定できていないが、界面活性効果やマラゴニ効果といっ た影響を考え、今後更なる調査を進めていく.

参考文献

[1] Chan T, Vese L, An active contour without edges, IEEE Trans. Image Processing, 10(2002), 266-277.

[2] Keane R A, Adrian R J Zhang Y, Super-resolution particle imaging velocimetry, Meas. Sci. Technol., 6(1995), 754-768.

[3] Tomiyama A, Kataoka I, Zun I Sakaguchi T, Drag Coefficient of single bubble under nomal and micro gravity conditions, Int. J. Fluid and thermal Eng., 41(1998), 472-479.

[4] Peebles F Garber H J, Studies on the motion of gas bubbles in liquids, Chem. Eng. Prog., 49(1953), 88-97.