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1．Introduction 

Due to either steep gradients or meager sediment supply, 

the exposure of bedrock in river usually occurs, even when 

channel gradients only exceed about 3 − 10%1). Moreover, 

in this kind of river bed with mixed alluvium and bedrock, a 

single solitary step is often observed to be formed as shown in 

Figure 1.  

In the previous researches, the solitary step is also in the 

river with bed fully covered by sediment, and it can migrate 

upstream with permanent form in some situation caused by 

erosion2). However, being different from the river bed without 

bedrock exposure, which is easily eroded by the flow, the 

bedrock is resistible to flow incision but more possible to be 

eroded by sediment abrasion3). 

In this research, a model is applied to explain the bedrock 

incision mechanism. An analysis is expressed using this 

model to demonstrate if the solitary step forming on the 

bedrock can migrate upstream with a permanent profile as 

well. 

 

2．Formulation 

2.1 Governing equations 

In this model, we employed MRSAA (Macro-Roughness-

based Saltation-Abrasion-Alluviation) model4) to describe the 

bedrock erosion. The bedrock incision takes place due to 

abrasion of sediment transported on the bedrock. Therefore, 

the bedrock incision rate can be assumed to be proportional to 

the net amount of sediment transported on the bed. However, 

the bedrock is not eroded if the bed is completely covered 

with sediment. Therefore, the incision rate is described by 

 
𝜕𝜂𝑏

𝜕𝑡̃
= −𝛽(1 − 𝑝)𝑞̃𝑎 (1) 

where 𝜂̃𝑏 is the bed elevation of bedrock, 𝑡̃ is time, 𝛽 is an 

empirical constant, 𝑞̃𝑎  is the net amount of sediment 

transported on the bedrock, and the tildes denote dimensional 

variables which will be removed to express non-dimensional 

equivalent. The cover factor 𝑝 represents the percentage of 

the bed surface which is covered with sediment, and 1 − 𝑝 

therefore is the rate of bedrock exposure. The net sediment 

transport rate 𝑞̃𝑎 is assumed to be expressed by the capacity 

sediment transport rate 𝑞̃𝑎𝑐 times the availability of sediment 

on the bed. The availability of sediment on the bed should be 

related to the cover factor 𝑝. For this study, we assume that 

the availability of sediment is approximately identitied to the 

cover factor, the incision rate can be written in the form 

 
𝜕𝜂𝑏

𝜕𝑡̃
= −𝛽𝑝(1 − 𝑝)𝑞̃𝑎𝑐 (2) 

The time variation of the thickness of the alluvial layer is 

assumed to be expressed by the Exner type equation, with the 

use of the sediment transport capacity, written in the form 

 𝑝
𝜕𝜂𝑎

𝜕𝑡̃
= −

1

1 − 𝜆

𝜕𝑝𝑞̃𝑎𝑐

𝜕𝑥̃
 (3) 

The cover factor is related to the thickness of alluvial layer 

η̃a by 

 𝑝 = {

𝜂𝑎

𝐿̃𝑚𝑟

    𝑤ℎ𝑒𝑛    𝜂𝑎 <  𝐿̃𝑚𝑟

    1       𝑤ℎ𝑒𝑛     𝜂𝑎 >  𝐿̃𝑚𝑟  

 (4) 

𝐿̃𝑚𝑟  is the macro roughness height. If the bed is not 

completely covered with sediment, sediment will deposit in 

the interstices of the roughness.  

The total bed elevation 𝜂̃ is the sum of the elevation of 

bedrock surface and the alluvial thickness as follows:  

 𝜂 = 𝜂𝑎 + 𝜂𝑏  (5) 

The flow on moderately mild slopes can be written in the 

St. Venant shallow water equations of the form 

 𝑢̃
𝜕𝑢̃

𝜕𝑥̃
= −𝑔

𝜕ℎ̃

𝜕𝑥̃
− 𝑔

𝜕𝜂

𝜕𝑥̃
−

𝜏̃𝑏

𝜌ℎ̃
 (6) 

 
𝜕𝑢̃ℎ̃

𝜕𝑥̃
= 0 (7) 

where 𝑢̃ is the velocity in the 𝑥̃ direction, ℎ̃ is the flow 

depth, and 𝜏̃𝑏  is the bed shear stress, 𝑔  is the gravity 

acceleration (=9.8 m/s2), and 𝜌  is the density of water 

(=1,000 kg/m3). The bed shear stress vector is assumed to be 

written in the form 

 𝜏̃𝑏 = 𝜌𝐶𝑓𝑢̃2 (8) 

where 𝐶𝑓 is the bed friction coefficient which is usually a 

weak function of the flow depth divided by the roughness 

height. We assumed, however, that the bed friction coefficient 

Fig. 1 A solitary step observed in Ikeshomanai River in 

eastern Hokkaido 
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is constant for simplicity in this study. 

 

2.2 Equilibrium flow without step and critical erosion 

condition 

Suppose that the bed is flat but tilted at a uniform slope 𝑆 as 

shown in Figure 2. The sediment supply from the upstream is 

𝑞̃𝑎𝑠, which is assumed not to be sufficient to cover the bed 

completely. Because the bed has the uniform slope, the 

velocity is constant, and the resultant sediment transport 

capacity is also constant. The cover factor 𝑝 is then constant 

along the reach. Denoting these constant values of 𝑢̃, 𝑞̃𝑎𝑐 

and 𝑝  by 𝑢̃𝑛 , 𝑞̃𝑎𝑐𝑛 , and 𝑝𝑛  respectively, we have the 

relation  

 𝑝 = 𝑝𝑛 =
𝑞̃𝑎𝑠

𝑞̃𝑎𝑐(𝑢̃𝑛)
=

𝑞̃𝑎𝑠

𝑞̃𝑎𝑐𝑛
 (9) 

Because the bed is not completely covered with sediment 

as assumed herein, the sediment supply q̃as is smaller than 

the sediment transport capacity q̃acn , and therefore, 𝑝  is 

definitely less than unity.  

The flow discharge per unit with 𝑞̃𝑤 is defined by  

 𝑢̃𝑛ℎ̃𝑛 = 𝑞̃𝑤  (10) 

where ℎ̃𝑛 is the follow depth in the normal flow condition 

over a flat bed with a constant slope 𝑆. The bed shear stress is 

balanced with the streamwise component of gravity force, 

such that  

 𝜌𝐶𝑓ũ𝑛
2 = 𝜌𝑔h̃𝑛S  (11) 

Substituting (10) into (11), we obtain the Froude number 

corresponding to this normal flow condition. That is  

 𝐹𝑟𝑛 =
𝑢𝑛

√𝑔ℎ̃𝑛

= √
𝑆

𝐶𝑓
  (12) 

Even if the sediment supply 𝑞̃𝑎𝑠 and the flow discharge 

𝑞̃𝑤  remain the same, the sediment transport capacity 𝑞̃𝑎𝑐 

decreases with declined slope. When the slope is smaller than 

some threshold slope 𝑆𝑡 as shown in Figure 3, the velocity 

becomes sufficiently small for the sediment transport capacity 

𝑞̃𝑎𝑐 to decrease to the sediment supply 𝑞̃𝑎𝑠. The bed is then 

completely covered with sediment ( 𝑝 = 1 ). The velocity 

which can transport the amount of sediment exactly 

equivalent to the sediment supply is called the threshold 

velocity and is denoted by 𝑢̃𝑡. 

The equation s of continuity and force balance are    

 𝑢̃𝑡ℎ̃𝑡 = 𝑞̃𝑤, 𝜌𝐶𝑓𝑢̃𝑡
2 = 𝜌𝑔ℎ̃𝑡𝑆𝑡   (13) 

and  

 𝐹𝑟𝑡 =
𝒖̃𝑡

√𝑔ℎ̃𝑡

= √
𝑆𝑡

𝐶𝑓
  (14) 

 

2.3 Non-dimensionalization 

We employed the sediment supply 𝑞̃𝑎𝑠 and the threshold 

value 𝑢̃𝑡, ℎ̃𝑡, and 𝑆𝑡 to normalize all the variables as shown 

in the following equations:  

 (ℎ̃, 𝜂𝑎, 𝜂𝑏, 𝜂, 𝐿̃𝑚𝑟) = ℎ̃𝑡(ℎ, 𝜂𝑎 , 𝜂𝑏 , 𝜂, 𝐿𝑚𝑟) (15a) 

 (𝑞̃𝑎, 𝑞̃𝑎𝑐) = 𝑞̃𝑎𝑠(𝑞𝑎, 𝑞𝑎𝑐) (15b) 

 𝑥̃ =
ℎ̃𝑡

𝑆𝑡
𝑥, 𝑡̃ =

ℎ̃𝑡

𝛽𝑞̃𝑎𝑠
𝑡, 𝑢̃ = 𝑢̃𝑡𝑢 (15c-e) 

Non-dimensional flow equations take the form 

 𝐹𝑟𝑡
2𝑢

𝜕𝑢

𝜕𝑥
= −

𝜕ℎ

𝜕𝑥
−

𝜕𝜂

𝜕𝑥
−

𝑢2

ℎ
 (16) 

 
𝜕𝑢ℎ

𝜕𝑥
= 0 (17) 

The bed evolution equations are normalized in the form 

 
𝜕𝜂𝑏

𝜕𝑡
= −𝑝(1 − 𝑝)𝑞𝑎𝑐 (18) 

 𝛾𝑝
𝜕𝜂𝑎

𝜕𝑡
= −

𝜕𝑝𝑞𝑎𝑐

𝜕𝑥
 (19) 

 𝑝 = {

𝜂𝑎

𝐿𝑚𝑟
   𝑤ℎ𝑒𝑛    0 < 𝜂𝑎 ≤ 𝐿𝑚𝑟

1      𝑤ℎ𝑒𝑛        𝜂𝑎 > 𝐿𝑚𝑟

 (20) 

 𝜂 = 𝜂𝑎 + 𝜂𝑏 (21) 

where the non-dimensional parameter γ is 

 𝛾 =
𝛽(1−𝜆)ℎ̃𝑡

𝑆𝑡
  (22) 

The bedrock incision rate is usually rather small, so that 𝛽 

takes a considerably small value. Therefore, the value of γ is 

also expected to be small. 

From (10), (12), (13) and (14), the non-dimensional 

normal flow velocity 𝑢𝑛 is written in the form 

 𝑢𝑛 =
𝑢𝑛

𝑢𝑡
= √

𝑆

𝑆𝑡

3
= 𝑆𝑟

1/3
= (

𝐹𝑟𝑛

𝐹𝑟𝑡
)

2/3
  (23) 

where 𝑆𝑟 is the bed slope normalized by the threshold bed 

slope 𝑆𝑡. 

 

2.4 Quasi-steady assumption of alluvial process 

We drop terms with the small parameter 𝛾, (19) is reduced 

to  

 
𝜕𝑝𝑞𝑎𝑐

𝜕𝑥
= 0  (24) 

This means that the net sediment transport 𝑝𝑞𝑎𝑐  is 

constant in space. The physical implication of this is that 

bedrock incision is so slow that the time variation of the bed 

elevation due to the alluvial process can be approximated to 

vanish in terms of slow time scale of the bedrock incisional 

Fig. 2 Conceptual diagram of the normal flow condition   

without a step, and the definition of 𝑢̃𝑛 

Fig. 3 Conceptual diagram of the threshold condition for 

bedrock incision, and the definition of 𝑢̃𝑡 
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process.  

The dimensional form of 𝑝𝑞𝑎𝑐 is 𝑝𝑞̃𝑎𝑐 = 𝑞̃𝑎𝑠. Therefore, 

(24) is integrated to be 

 𝑝𝑞𝑎𝑐 = 1  (25) 

It means that the net sediment transport rate is constant in 

space even if the bed elevation is not constant. With the use of 

the above relation, (18) and (20) can be rewritten in the form 

 
𝜕𝜂𝑏

𝜕𝑡
= −(1 − 𝑞𝑎𝑐

−1)  (26) 

 𝜂𝑎 =
𝐿𝑚𝑟

𝑞𝑎𝑐
  (27) 

The time variation of the total bed elevation 𝜂 is then 

written in the form 

 
𝜕𝜂

𝜕𝑡
= −𝐿𝑚𝑟

𝑞𝑎𝑐,𝑢

𝑞𝑎𝑐
2

𝜕𝑢

𝜕𝑡
− (1 − 𝑞𝑎𝑐

−1)  (28) 

where 𝑞𝑎𝑐,𝑢 is the partial derivative of 𝑞𝑎𝑐 with the respect 

to 𝑢. 

 

3．Permanent form of a step 

3.1 Flow equation on a step with a permanent form 

In order to find the permanent form, we introduced the 

following moving coordinates: 

 𝑥∗ = 𝑥 + 𝑐𝑡,     𝑡∗ = 𝑡   (29) 

Because of the bedrock incision, and the moving 

coordinate, the bed elevation 𝜂 need to be adjusted in the 

vertical direction to achieve a permanent form. Denoting the 

vertical net aggradation rate by 𝑤, we obtained the following 

coordinate transformation: 

 𝜂∗ = 𝜂 − 𝑤𝑡  (30) 

Figure 4 is geometrical relation between the incision rate 

in a flat portion (1 − 𝑞𝑎𝑐
−1)∆𝑡, the apparent aggradation rate 

due to step migration 𝑐𝑆𝑟∆𝑡, and the net aggradation rate 

𝑤∆𝑡. That is  

 𝑤 = 𝑐𝑆𝑟 − (1 − 𝑞𝑎𝑐𝑛
−1 )  (31) 

Applying the coordinate transformation (29)-(30) to (28), 

dropping the dependence on time 𝑡∗ and dropping the stars 

for simplicity  

 −
𝑑𝜂

𝑑𝑥
=

𝑤

𝑐
+ 𝐿𝑚𝑟

𝑞𝑎𝑐,𝑢

𝑞𝑎𝑐
2

𝑑𝑢

𝑑𝑥
+

1

𝑐
(1 − 𝑞𝑎𝑐

−1)  (32) 

The flow equations (16) and (17) are invariable for the 

coordinate transformation. 

Substituting (17) to (16) with considering 𝑢ℎ = 1 to 

eliminate h, and then substituting the equation we get and (31) 

into (32), we obtained the following equation: 

 

 

𝑑𝑢

𝑑𝑥
=

𝑆𝑟+𝑐−1(𝑞𝑎𝑐𝑛
−1 −𝑞𝑎𝑐

−1)−𝑢3

𝐹𝑟𝑡
2𝑢−𝑢−2−𝐿𝑚𝑟𝑞𝑎𝑐,𝑢𝑞𝑎𝑐

−2  (33) 

In order to go further, the bedload function has to be 

specified. We employed the Meyer-Peter & Müller formula of 

the form 

 𝑞𝑎𝑐 = (
𝑢2−𝑢𝑐

2

1−𝑢𝑐
2 )

3/2

  (34) 

where 𝑢𝑐 is the critical velocity below which bedload does 

not take place. Substituting (34) into (33), we obtained 

 
𝑑𝑢

𝑑𝑥
=

𝑐−1[(
1−𝑢𝑐

2

𝑢𝑛
2 −𝑢𝑐

2)
3/2

−(
1−𝑢𝑐

2

𝑢2−𝑢𝑐
2)

3/2

]+𝑆𝑟−𝑢3

𝐹𝑟𝑡
2𝑢−𝑢−2−3𝐿𝑚𝑟

𝑢(1−𝑢𝑐
2)3/2

(𝑢2−𝑢𝑐
2)5/2

  (35) 

 

3.2 Boundary and regularity condition 

Figure 5 is the conceptual diagram of the flow around a 

solitary step. We assume that the flows at infinite upstream 

and downstream are both in the normal flow condition as 

shown in figure 5. Going back to the dimensional variables, 

we find the following relation in the normal flow condition far 

upstream and downstream: 

 𝜌𝐶𝑓𝑢̃𝑛
2 = 𝜌𝑔ℎ̃𝑛𝑆      𝑎𝑠     𝑥̃ → ±∞   (36) 

The origin of 𝑥̃ coordinate is defined somewhere around 

the step later. This equation can be rewritten in the non-

dimensional form 

 𝑢𝑛
2 = ℎ𝑛𝑆𝑟       𝑎𝑠    𝑥 → ±∞   (37) 

Because ℎ = 𝑢/1, we find 

 𝑢𝑛 = 𝑆𝑟
1/3

 ,   ℎ𝑛 = 𝑆𝑟
−1/3

       𝑎𝑠    𝑥 → ±∞   (38) 

As illustrated in figure 5, the flow is accelerated in the 

downstream direction and made a gradual transition from 

subcritical to supercritical regimes in the Froude sense 

upstream of the step. Therefore, the Froude critical point 

appears around the step. If the effect of an alluvial layer is not 

taken into account in (35), 𝐿𝑚𝑟  vanishes and the 

denominator of (35) vanishes when 𝑢 = 𝐹𝑟𝑡
−2/3

 which is the 

Froude critical point. In order to avoid the singularity at this 

point, the numerator should vanish as well. In this analysis, 

the effect of an alluvial layer is taken into account, and the 

denominator therefore vanishes when 𝑢  is slightly larger 

than 𝐹𝑟𝑡
−2/3

. If this value is denoted by 𝑢1, the following 

equation is the definition of 𝑢1:  

Fig. 5 Conceptual diagram of the flow around a solitary step Fig. 4 Conceptual diagram of a permanent form of a step, 

and the definition of c and w 
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 𝐹𝑟𝑡
2𝑢1 − 𝑢1

−2 − 3𝐿𝑚𝑟
𝑢1(1−𝑢𝑐

2)
3
2

(𝑢1
2−𝑢𝑐

2)
5
2

= 0  (39) 

The condition for (35) not to have singularity (regularity 

condition) is the numerator vanishes when 𝑢 = 𝑢1. From this 

condition, the migration speed 𝑐 is obtained in the form  

 𝑐 =
(

1−𝑢𝑐
2

𝑢𝑛
2 −𝑢𝑐

2)
3/2

−(
1−𝑢𝑐

2

𝑢1
2−𝑢𝑐

2)
3/2

𝑢1
3−𝑆𝑟

  
(40) 

If the Froude critical point is defined as the origin of 𝑥, 

the following boundary condition holds: 

 𝑢 = 𝑢1    𝑤ℎ𝑒𝑛   𝑥 = 0  (41) 

 

3.3 Numerical solution 

Substituting (40) into (35), we obtain 

 
𝑑𝑢

𝑑𝑥
=

(
1−𝑢𝑐

2

𝑢𝑛
2 −𝑢𝑐

2)

3
2

−(
1−𝑢𝑐

2

𝑢2−𝑢𝑐
2)

3
2

(
1−𝑢𝑐

2

𝑢𝑛
2 −𝑢𝑐

2)

3
2

−(
1−𝑢𝑐

2

𝑢1
2−𝑢𝑐

2)

3
2

(𝑢1
3−𝑆𝑟)+𝑆𝑟−𝑢3

𝐹𝑟𝑡
2𝑢−𝑢−2−3𝐿𝑚𝑟

𝑢(1−𝑢𝑐
2)3/2

(𝑢2−𝑢𝑐
2)5/2

  

(42) 

The above equation is integrated to yield the velocity 

distributions as a function of 𝑥. The boundary conditions are 

the following: 

 𝑢 = 𝑠𝑟
1/3

    𝑎𝑠   𝑥 → −∞  (43) 

 𝑢 = 𝑢1    𝑎𝑠   𝑥 = 0 (44) 

The problem includes four parameters: 𝑆𝑟, 𝐹𝑟𝑡, 𝑢𝑐, 𝐿𝑚𝑟. 

In order for the permanent form of solitary step to exist, the 

four parameters cannot arbitrary given, but need to satisfy 

some condition. This problem is then reduced to find the 

domain of the four parameters. If these domains exist, through 

integrating equation (42) under the boundary conditions, the 

distribution of flow velocity and slope profile must be 

obtained as expected.  

 

4．Results and discussion 

First, the four parameters have their own domains due to 

the physical meaning that they represent, which is expressed 

as follow. 𝑢̃𝑐 should be smaller than 𝑢̃𝑡 for the reason that 

even in critical erosion condition, the sediment can still be 

transported from upstream. In terms of non-dimensional 

condition, that means 0 < 𝑢𝑐 < 1. The normalized uniform 

slope at the upstream 𝑆𝑟 should be larger than 1 in order not 

to reach critical erosion condition. Considering the macro 

roughness height is much smaller than the flow depth in 

reality, we assume that 0 < 𝐿𝑚𝑟 ≤ 0.1 . To ensure the 

existence of the two boundary conditions, the velocity at far 

upstream 𝑢̃𝑛  must be smaller than that at Froude critical 

point, 𝑢̃1 . In this case, we simplified the condition into 

𝑢𝑛 = 𝑆𝑟
1/3

< 𝐹𝑟𝑡
−2/3

. 

After applying the value of each parameter into (42) within 

its domain as mentioned above, we found that the derivative 

of 𝑢 with respect to x stays negative in all the conditions. It 

can be seen from Figure 6 and Figure 7 as examples. 

 

 

 

 

 

 

 

 

 

Fig. 7 Plot 𝑑𝑥/𝑑𝑢 versus u for 𝑢𝑐 = 0.5 and 𝐿𝑚𝑟 = 0.05 

For this reason, the flow velocity cannot accelerate in the 

downstream direction, which contradicts to the assumption. 

On the other hand, the bedrock solitary step does not have a 

permanent form that migrates upstream.  

 

5．Conclusion 

An analysis is performed on a solitary step in the bedrock-

alluvial river to demonstrate if the step can migrate upstream 

without changing its profile. It is found that the solitary step 

as assumed does not exist. Therefore, it keeps changing its 

shape. In this case, two situations could occur. One is that the 

step surface reduces its steepness, and finally disappears. The 

other is that it may increase its steepness and becomes a 

discontinuous step.  
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Fig. 6 Plot 𝑑𝑢/𝑑𝑥 versus 𝑢 for 𝑆𝑟 = 2 and 𝐹𝑟𝑡 = 0.5 
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