死活荷重合成桁撤去時における応力照査と撤去時の実応力

Stress collation and actual stress at time of removal of life and death load composite girder

(株)砂子組	○正員	金子	弘幸	(Hiroyuki Kaneko)
札幌建設管理部岩見沢出張所	非会員	斎藤	寛巳	(Hiromi Saito)
(株)砂子組	正員	近藤	里史	(Satoshi Kondo)
(株)砂子組	正員	田尻	太郎	(Taro Tajiri)
(株)砂子組	正員	佐藤	昌志	(Masashi Sato)

-			66750			
. 50	22150	. 10	00 22150		22150	50
250	21650	250 25	50 21650	250 250	21650	250
			図-1 橋梁側面	īΣ		

1. はじめに

道道月形峰延線第二幹線橋は、支間 21.65 m, 斜角 70°の3連の直線単純桁橋である。老朽化のため架けか えとなり、解体の運びとなった。

現存する図面によれば本橋の施工は昭和 41 年と竣工 は古く、死活荷重合成桁橋となっているため、桁高は 1.2 m と比較的小さい。よって解体時に安易に床版を横 断方向に切断すると合成効果が失われ、床版が負担して いた応力が全て主桁に作用し、施工時の一時的な期間に せよ、主桁の許容応力を超過する恐れがあった。

そのような理由から解体手順を検討する目的で撤去手 順を反映した Step 解析を行うと同時に、合成桁として 機能している事を確認する目的で、重機を用いた載荷試 験、および床版撤去時の歪み測定も行ったので報告する。

2. 解析モデル

3 連の単純桁橋なので、1 連のみ取り出し解析を行っ た。図-3 に解析モデルを示す。主桁は I 形断面で Web は 1200×9。外桁 U.F.200×10~280×14, L.F.240×14 ~370×30。内桁は U.F.200×10~230×14, L.F.240× 14~340×32。床版に関する死荷重は、別途横断方向の モデルを組み各主桁へ分配した。合成時の床版有効幅は、 道示.鋼橋編¹⁾に従った。解体時の解析なので、活荷重 は考慮していない。

3. 合成化ステップ

本橋の合成化ステップは、表-1である。

表-1 合成化ステップ

Step	構造系	非合成/合成
1	主桁敷設	
2	主桁+対傾構	非合成
3	主桁+対傾構+床版打設	
4	主桁+対傾構+床版+ <mark>舗装+地覆+高欄</mark>	合成

表-1 より床版を打設し、スタッドが床版に定着した 以降の死荷重は、床版と鋼主桁が共同で負担する事にな る。床版有効幅を考慮すると、合成前後で主桁の曲げ剛 性比は約3倍である。従って解体時に安易に床版を横断 方向に切断すると、[舗装+地覆+高欄]の死荷重応力は 3倍の強度で鋼主桁に作用し、施工時の一時的な期間に せよ、許容応力を超過する恐れがある。これらの重量は

図-3 解析モデル

床版重量の約50%に達する。

図-4 は非合成の完成形 Step4 の時点での主桁応力で ある。3 本の主桁はほぼ同等な応力なので、ここでは内 桁のみ示す。0.25 刻みの横軸は対傾構位置で、縦断勾 配はないので、軸力は考慮していない。有効座屈長は図 -3 の対傾構間隔 5415 mm を用いている。

図-4 からは私見であるが、死活荷重合成桁の設計思 想を忠実に反映した、許容応力度を使い切った優れた設 計であると考えられる。しかしそのために、解体時に全 死荷重を載せたまま床版を切断して非合成化すると図-5 となり、許容応力度を約 20%超過する。図-5 は、図-3 の床版割②の部分を、非合成化したケースである。

4. 床版撤去手順

床版撤去は、図-3 の床版割②→③→④→①の順序で 行った。中央部から床版を撤去したのは、①,④には端 部支点のサポートがあるからである。応力的に最も厳し いのは②の撤去時となるので、②撤去時の結果のみ示す。

床版撤去の基本方針として、合成後の死荷重は全て除 く必要がある。最初に最も重量比率のある舗装を全面で 切削し、高欄を撤去した(図-7)。この時に図-2 にあ るコンクリート舗装 50 mm ではなく瀝青舗装 100 mm で ある事が明らかとなった。

次に地覆を撤去するために、図-2の張出し部 1000 mm 幅をワイヤーソーで外桁付近まで全径間で横断方向に切 断した(図-8)。計算上は張出し部が非合成化されたと 仮定し、張出し部の床版有効幅を無視して断面剛性を減 少させた。

張出し部の床版と地覆を全径間で撤去(図-9)。この とき腹版の局部座屈応力度を僅かに超過するが、短期荷 重なので問題ないと判断した。残存床版を全径間で横断 方向にカットし(図-10)、床版割②を撤去する。

図-10の時点で完全な非合成桁となる。なお図-6 は、 合成完成形(供用時)の状態である。図-10 以降は床版 重量が大幅に軽減されるため、十分余裕のある状態に移 行する。

当解析は微小変形を仮定した、静弾性線形解析である。 上記計算にあたっては表-2 に示す基本 Case を解析し、 施工手順に従い基本形に各 Case の作用力を足す集計を 行った。ただし非合成時,合成時の中立軸の位置ずれを 考慮し、集計はそれぞれの中立軸位置に基づいて算出し た、作用応力に対して集計した。なお表中では、張出し 部の有効幅を無視した断面剛性を外桁に与えたものを、 半合成と呼んでいる。

表-2 計算上の基本 Case と応力集計

基本Case	構造系	作用荷重	備考
非合成完成形	非合成	鋼重,床版	基本形
合成完成形	合成	舗装,地覆,高欄	集計
舗装高欄撤去	合成	地覆	集計
張出部非合成化	半合成	地覆	集計
張出部撤去	半合成	張出部徐荷	集計
非合成化	非合成	張出部床版徐荷	集計

: 上縁応力, : 下縁応力, : Web 上縁, : Web 上縁, : Web 下縁, : せん断応力, : 捻りせん断, :: 許容引張,
: 許容横倒れ, :: 許容局部, :: 許容せん断

5. 静載荷試驗結果

静載荷試験はバックフォーを用いて行った。載荷位置 図と測定断面は図-11 に示すように、概ね支間 L/2 と L/4 に当たり、上フランジ下面と下フランジ上面で歪み 測定を行った(図-12)。ここでは支間 L/2 断面に注目 し、結果を表-3 に示す。表中の e は歪み値より算出し た中立軸の、Web 天端からの距離である。

数値にばらつきはあるものの、歪みの大きなケース (表中赤字)に注目すれば、e はほぼ 150 mm となる。

一方、表-4 の床版有効幅と断面寸法より算出した e は 300 mm 前後であるが、この値はハンチを無視した計 算なので、ハンチ厚を考慮すれば測定値は不合理な値で はないと考えられる。

従って当橋梁はコンクリートの複合劣化を除き、構造 上は合成桁として十分健全に機能していたと判断できる。

表-3	歪み値によ	る中立軸位置	(支間 L/2)
-----	-------	--------	----------

		G1	G2	G3
Case-1	U.F.(μ)	-19	-19	-20
	L.F.(µ)	74	137	87
	e(mm)	249	146	222
Case-2	U.F.(μ)	-21	-19	-10
	L.F.(µ)	148	104	20
	e(mm)	147	189	397
	U.F.(μ)	-10	-21	-24
Case-3	L.F.(µ)	25	117	164
	e(mm)	354	186	156

表-4 断面寸法による中立軸位置(ヤング係数比15)

	e(mm)		
	L/2	L/4	
G1	327	309	
G2	301	285	
G3	327	309	

6. 床版撤去時の実歪み測定

床版撤去時に計測した主桁実歪みの変動を、図-13~

15 に示す。測定位置と測定項目は、前述と同じである。 測定は該当箇所施工期間中の 10/6~10/27 の約3週間 にわたって行い、測定間隔は15分で10/6 12:00 の値を 零点としている。

図中の青線は上フランジ歪みの変動,赤線が下フラン ジの同変動を示す(引張正)。同色の点線は、4. で述 べた計算から予想される変動量である。

実歪み変動には、明らかに温度歪みと思われる日周期 の変動周期があり、必ずしも滑らかな結果ではないが、 平均的傾向としては、以下となる。

図-11 バックフォー載荷位置図

外桁 G1 について解析値は、下フランジの歪み変動傾 向を捉えているが、上フランジについては非合成化時に 実歪みは計算値の約5倍の値となった。

中桁 G2 の実歪みは明らかに異常値と考えられる。床 版解体にあたっては、外桁近傍までワイヤーソーで張出 し部を切断し、非合成化時には桁直上のコンクリートを ハンドブレーカーではつる等の作業を行ったため、これ らは施工の影響である可能性がある。

外桁 G3 については、計算結果は実際の歪み変動をよく捉えていると考えられる。

7. まとめ

竣工の古い桁高の比較的小さい死活荷重合成桁の解体 に当たって、非合成化の影響により、施工中に鋼主桁へ の作用応力が許容応力度を越える恐れがあったため、事 前に Step 解析を行い、施工時に行った実歪み測定と結 果を比較した。

- (1) 竣工の古い桁高の比較的小さい合成桁においては、 設計時に解体は考慮されておらず、解体施工時 には危険を伴う可能性がある事が明らかとなった。
- (2) 解析と実歪み測定の比較結果からは、静弾性線形 解析の Step 解析で、非合成桁²⁾だけでなく合成 桁の解体過程も十分追える可能性がある。
- (3) 合成桁は、解体中に構造系が不連続に変化するため、歪み(応力)変動の特定を非合成桁²⁾より 高い精度で求められる。
- (4)施工期間中の実歪み、実応力測定は、施工作業の 影響を大きく受けると思われ、歪み測定等によ る施工管理は、現状では高い精度は望めないと 考えられる。今後解体撤去される橋梁が増える であろう事から、適切な測定方法の策定が望ま れる。

[参考文献]

- 道路橋示方書・同解説Ⅱ鋼橋編,日本道路協会, 2012年.
- 2)3径間連続曲線桁の床版撤去時の桁の歪み挙動,田 中孝宏他,土木学会北海道支部論文報告集第70号, 2014年.

10/06 10/08 10/10 10/12 10/14 10/16 10/18 10/20 10/22 10/24 10/26 10/28 図-14 主桁実応力変動 G2(床版撤去時)

