AFRP シートで曲げ補強した H 形鋼梁の静載荷実験

Static loading test of H-shaped steel beam strengthened with AFRP sheet

室蘭工業大学大学院	正 員 栗橋	祐介 (Yusuke Kurihashi)
三井住友建設	フェロー 三上	浩 (Hiroshi Mikami)
室蘭工業大学大学院	正 員 小室	雅人 (Masato Komuro)
釧路工業高等専門学校	フェロー 岸	徳光 (Norimitu Kishi)
室蘭工業大学大学院	学生会員 前田	亮輔 (Ryosuke Maeda)

1. はじめに

近年の異常気象の発生により,我が国では集中豪雨や台 風に伴う落石,土石流および竜巻飛来物等による甚大な被 害が多発している.このような環境下において,我が国で は,安心で安全な社会生活を維持して行くための方策とし て,社会基盤の強靭化を推進している.これにより,様々 な構造物の耐衝撃性評価および耐衝撃性向上に対するニー ズが高まっている.

衝撃的外力の作用を想定すべき鋼構造物としては,落石 防護柵や落石防護網に用いられる支柱,鋼製ロックシェッ ド,鋼骨組構造物などが挙げられる.著者らは,これまで 鋼構造物の耐衝撃性や耐衝撃挙動の解明を目的に,H形鋼 梁の重錘落下衝撃実験や三次元弾塑性衝撃応答解析を行っ ている¹⁾.しかしながら,既設鋼構造物の耐衝撃性向上法 に関する検討はほとんど行われていないのが,現状である.

このような背景より,本研究では,鋼構造物の耐衝撃性 向上法として FRP シート接着工法に着目し,その補強効 果を検討するための基礎資料の収集を目的に,FRP シート で曲げ補強した H 形鋼梁の4点曲げ静載荷実験を行った. 補強方法としては,鉄筋コンクリート (RC)構造物の耐衝 撃性向上法として検討が推進され,一部で実用化されてい るアラミド繊維製 FRP シート (以後,AFRP シート)²⁾を用 いることを基本として,繊維目付量が異なる場合や,鋼板 もしくは低弾性の FRP シートを併用する場合について検 討を行うこととした.

2. 実験概要

2.1 試験体概要

表-1には、本実験に用いた試験体の一覧を示している. 試験体数は、無補強の他、補強方法を4種類に変化させた全5体である.N試験体は無補強であり、A830およびA1245 試験体はそれぞれ目付量 830, 1245 g/m²のAFRPシートで曲げ補強した試験体である.また、A830-PおよびA830-S 試験体は、目付量 830 g/m²のAFRPシートと鋼梁 底面の間に、それぞれポリエチレンテレフタラート(PET) 製 FRP シート (以後, PFRP シート) および厚さ 1.5 mm の 薄鋼板を接着した試験体である.

表-1 に示している補強材の軸剛性は,後述の表-2 に 示す各材料の力学特性を用いて弾性係数 $E \times$ 断面積A と して評価している.また,軸剛性比は,補強量の指標とし て下式により求めた.

軸剛性比(%) =
$$\frac{補強材の軸剛性}{H形鋼梁の軸剛性} \times 100$$
 (1)

図-1 には,H形鋼梁の形状寸法,補強概要およびひず みゲージの貼り付け位置を示している。H形鋼梁の底面に は,各種補強材を接着している。なお,本実験では,既設 構造物の補修補強を対象としているため,接着範囲は梁中 央部から両支点の5 cm 程度内側までの範囲としている。

図-2には、各補強試験体の補強概要に関する断面図を示している。A830試験体には、目付量 830 g/m²のAFRP シートを1層用いている。A1245試験体の場合には、目付 量 415 g/m²のAFRPシートの上から樹脂を事前含浸した目 付量 830 g/m²のAFRPシートを積層して接着している。ま た、A830-P およびA830-S 試験体は、それぞれ PFRPシー トおよび薄鋼板上に事前含浸した目付量 830 g/m²のAFRP シートを積層する形で接着した。薄鋼板の幅は下フランジ 幅 150 mm に対して、120 mm とした。なお、補強を施す試 験体には、あらかじめ補強底面の表面処理としてブラスト 処理およびプライマー塗布を行っている。

表-2,表-3 には、それぞれ、H 形鋼梁および各補強 材の力学的特性値の一覧を示している.なお、鋼材につい ては、5 号試験片による引張試験結果、AFRP および PFRP シートについては公称値を示している.

2.2 実験方法と測定項目

実験は4点静的曲げ載荷により行った。中央部の載荷点 間隔は400 mm とした。荷重は容量500 kNの油圧ジャッ キを用いて作用させることとした。

測定項目は、載荷荷重、各点の変位および AFRP シート

	衣- 八 武殿神の一見		
試験体名	補強材	補強材の軸剛性 (MN)	軸剛性比(%)
Ν	-	-	-
A830	AFRP $\ge - \vdash (830 \text{g/m}^2)$	101.2	1.40
A1245	AFRP $\ge - \triangleright$ (415g/m ²) + AFRP $\ge - \triangleright$ (830g/m ²)	151.8	2.10
A830-P	$PFRP \sim - \restriction (1250g/m^2) + AFRP \sim - \restriction (830g/m^2)$	114.8	1.58
A830-S	薄鋼板 (1.5mm) + AFRP シート (830g/m ²)	502.9	6.94

表-1 試験体の一覧

平成27年度 土木学会北海道支部 論文報告集 第72号

表-2 H形鋼梁の実寸法および力学的特性値

动花	厚さ	弾性係数	降伏強度	引張強度
即亚	(mm)	(GPa)	(MPa)	(MPa)
フランジ	8.5	206	310	436
ウェブ	5.5	200	380	469

	口口目	可と	弾性	降伏	引張	破断
材料	日刊重	厚さ	係数	強度	強度	ひずみ
	(g/m^2)	(mm)	(GPa)	(MPa)	(MPa)	(μ)
AFRP	415	0.286	110	-	2060	17,500
	830	0.572	118			
PFRP	1250	0.906	10	-	740	70,000
薄鋼板	-	1.5	206	310	436	-

表-3 各補強材の力学的特性値

のひずみである.ひずみの測定位置は、図-1 に示している通りである.また、補強材と鋼梁の接着強度試験は、「連続繊維シートとコンクリートの接着試験方法(案)」に準拠して実施した.

3. 実験結果

3.1 荷重-変位関係

図-3 には、各試験体の荷重-変位関係に関する実験結 果を示している.図より、いずれの試験体の場合において も、荷重 P = 240 kN 程度までは変形量の増加に伴って、荷 重がほぼ線形に増加していることが分かる.荷重の増加勾 配は、補強することにより僅かに大きくなるものの、補強 方法による違いはほとんどないことが分かる.

無補強のN試験体は, P = 260 kN 程度において荷重の 増加勾配が大きく低下し,変位 $\delta = 20$ mm 程度まではP = 285 kN 程度となっている.また,変位 $\delta = 20$ mm 程度以降 においては,荷重の増加勾配がわずかに上昇する程度であ る.これは,鋼材のひずみ硬化によるものと考えられる.

A830 試験体の場合には、N 試験体よりも 20 kN 程度大 きな荷重で増加勾配が低下するものの、その後の増加勾配 はN 試験体の場合よりも大きい. これは、鋼梁の下フラン ジ降伏後、AFRP シートの補強効果がより明確に現れたこ とによるものである.また、変位 $\delta = 35 \text{ mm}$ 程度で荷重が 低下している.これは、後述の**写真-1** に示すように上フ ランジが座屈したことによるものと考えられる.

A1245 試験体の場合には,A830 試験体の場合よりもさ らに降伏荷重および最大荷重が大きくなる傾向にあるもの の,最大荷重時変位は小さくなっている.これは,曲げ補 強量の増加により,梁の曲げ耐力が向上する一方で,上フ ランジの負担が大きくなったことによるものである.

A830-P 試験体の場合には, P = 290 kN までは A830 試験 体とほぼ同様の性状を示しているものの,その後の増加勾 配は A830 試験体の場合よりも大きくなっている.これは, 変形量の増加に伴って PFRP シートの補強効果が発揮され ていることによるものと考えられる.また,最大荷重およ び最大荷重時変位は,共に A830 および A1245 試験体の場

(d) A830-S 試験体

写真-1 各補強試験体の変形状況

写真-2 接着強度試験状況と界面の状況の一例

合よりも大きい.

A830-S 試験体は、P = 300 kN 程度において荷重の増加 勾配が急激に低下している、しかしながら、その後の増加 勾配は、A830 試験体よりも小さい。これは、補強材に薄鋼 板を用いていることにより降伏荷重が大きいものの、降伏 後に AFRP シートが薄鋼板との界面で剥離し、シートの補 強効果が発揮されていないことによるものと考えられる. なお、シートの剥離状況については後述することとする。

3.2 破壊性状および接着試験結果

写真-1には、実験終了後における各補強試験体の変形 状況を示している。いずれの補強試験体もスパン中央部の 上フランジおよびウェブが著しく座屈していることが分か る. 実験時には、H形鋼梁の大変形に伴う補強材の付着せ ん断応力の増大や剥離破壊を想定して,変位 60 mm 程度 まで載荷を続けたものの,等曲げ区間の上フランジおよび ウェブが座屈して, 上フランジの著しい変形を伴う横倒れ 座屈が発生した.そのため、実験の安全性を考慮して載荷 を終了した.

梁底面においては, A830/1245 および A830-P 試験体の 場合にはシートの剥離は見られなかった。点検棒による打 音検査によっても浮きなどの変状は確認されなかった. **写** 真-2 には、A1245 試験体の接着強度試験状況および試験 後における界面の状況の一例を示している. 接着試験は, 各試験体においてスパン中央部, 端部および後述する最大 付着せん断応力が発生するスパン中央部から 300 mm 程度 支点側の位置で行った、写真に示されているように、剥離 はシートと鋼梁底面の間で生じている. このような状況は A830-S 試験体を除いた他の試験体においても同様であっ た. また,接着強度は7~8 MPa程度であった.

A830-S 試験体の場合には、**写真-3**に示すように AFRP シートが薄鋼板の縁で軸方向に断裂し、薄鋼板上のシート

写真-3 A830-S 試験体のシートの断裂・剥離状況

が剥離している。後述するように、AFRP シートは早期に 剥離していることから、薄鋼板の縁の段差部近傍(図-2 (e) 参照)においてシート剥離に影響を及ぼす程度の応力が 作用し、AFRP シートの断裂・剥離が生じたものと推察さ れる.この点については、今後も検討していく必要がある ものと考えている。なお、薄鋼板と鋼梁の接着は確保され ており,実験終了後においても浮きや剥離は全く認められ なかった.

3.3 AFRP シートの軸方向ひずみ分布性状

図-4には、降伏後におけるひずみ分布の推移を検討す るため,変位 $\delta = 10, 20, 30, 40, 50$ および 60 mm時の実 験結果を各試験体について示している。図より, A830/1245 および A830-P 試験体の場合には、変位の増加に伴って、 ひずみが徐々に増加する傾向にあることが分かる。特に, スパン中央部のひずみが大きくなっている.これは、等曲 げ区間の上フランジが座屈したため,見かけ上の断面二次 モーメントが減少し、この部分の曲率が増大したことに よるものと考えられる.一方,せん断スパンにおいては, 載荷点近傍においてひずみ勾配が急増していることから, シート接着界面の付着せん断応力が増加しているものと考 えられる.

なお, A830-P 試験体の大ひずみの発生範囲は, A830 試 験体の場合よりも大きい. これは、AFRP シートと鋼梁の 間に弾性係数の小さい PFRP シートを配置しているため、 付着に抵抗する領域が増加したことによるものと推察さ れる. この点については、衝撃荷重が作用する場合を含め て、今後の検討課題としたい.

A830-S 試験体の場合には、変位 $\delta = 20 \text{ mm}$ 時以降から AFRP シートのひずみが均等化する傾向を示しており、 $\delta =$ 30 mm 時にはひずみの均等化範囲がほぼ支点側まで到達し ている。これは、シートと薄鋼板との界面における剥離が

図-4 降伏以降の AFRP シートの軸方向ひずみ分布性状

試験体名	軸剛性	軸剛性比	最大 荷重	最大付着 せん断応力	
	(MN)	(%)	P_{max} (kN)	τ_{max} (MPa)	
A830	101.2	1.40	322.5	9.6	
A1245	151.8	2.10	335.3	13.2	
A830-P	114.8	1.58	336.0	11.3	

表 4 最大付差せん断応力

変位の増加に伴って発生・進展していることを暗示してい る.また,変位δ=60 mm においては,シートが完全に剥 離し,ひずみが零まで低下している.

3.4 最大付着せん断応力

表-4には、各補強試験体の最大付着せん断応力を示している。最大付着せん断応力 τ_{max} は、FRP シートの各位置において隣接するひずみゲージ間に生ずる平均付着せん断応力の最大値として評価した。各試験体の最大付着せん断応力 τ_{max} は下式により算出した。なお、A830-S 試験体は、AFRP シートが剥離したことより検討から除外している。

A830/1245 試験体

$$\tau_{max} = (\varepsilon_2 - \varepsilon_1) E_a t_a / l \tag{2}$$

$$\tau_{max} = (\varepsilon_2 - \varepsilon_1)(E_a t_a + E_p t_p)/l \tag{3}$$

ここに, ε_1 , ε_2 : その差分が最大になる隣接する実測ひず み, E_a : AFRP シートの弾性係数, t_a : AFRP シートの設計 厚さ, E_p : PFRP シートの弾性係数, t_p : PFRP シートの設計 厚さ, l: 隣接するひずみゲージ間の距離, である.

表より,最大付着せん断応力 τ_{max} は, A1245 試験体の場 合が最も大きく,次いで A830-P, A830 試験体の順に大きい ことが分かる.これは,補強材の軸剛性の大小関係に対応 している.また,最大荷重は A830-P 試験体が最も大きい にもかかわらず,最大付着せん断応力は A1245 試験体より も小さい.これは,弾性係数の低い PFRP シートを中間層 に用いることで,付着せん断応力が緩和されたことによる ものと推察される.この点については,今後さらに検討を 進めてゆく必要がある.

このことから, 軸剛性比が2%程度の補強量の場合には, H形鋼梁が降伏し大きく変形する場合においてもシー

トの剥離は生じず,最大付着せん断応力は13 MPa 程度以 上であることが明らかになった.

4. まとめ

本研究では、鋼構造物の耐衝撃性向上法として FRP シー ト接着工法に着目し、その補強効果を検討するための基 礎資料の収集を目的に、FRP シートで曲げ補強した H 形 鋼梁の4点曲げ静載荷実験を行った.補強方法としては、 AFRP シートを用いることを基本として、繊維目付量の異 なる場合や、鋼板もしくは低弾性の FRP シートを併用す る場合について検討を行った.本実験により得られた知見 をまとめると、以下の通りである.

- AFRPシートの鋼梁との付着性能は、スパン中央部の 上フランジやウェブが座屈して断面の曲率が急増す る場合においても確保される.本実験においては、付 着せん断応力が13 MPa 程度発生する場合においても シート剥離には至らなかった。
- 2) シート補強量を大きくすることにより、H形鋼はりの 降伏および最大荷重が増加するものの、最大荷重時変 位は小さくなる傾向にある。
- 3) 弾性係数の低い PFRP シートを併用する場合には、シートの接着界面に生じる付着せん断応力を低減できる可能性がある。
- 4) 薄鋼板を併用する場合には、降伏荷重到達後シートが 薄鋼板から剥離するものの、薄鋼板と鋼梁の付着は終 局まで確保されている。

参考文献

- 1) 葛西勇輝,小室雅人,栗橋祐介,岸 徳光:重錘落下 衝撃を受けるH形鋼梁の耐衝撃挙動,鋼構造年次論 文報告集,Vol. 23, pp. 664-670, 2015.11
- 三上浩,栗橋祐介,今野久志,岸徳光:衝撃載荷によって損傷を受けた RC 梁の AFRP シート曲げ補強による耐衝撃性向上効果,構造工学論文集, Vol. 61A, pp. 990-1001, 2015.3