UD プリプレグを用いたらせん積層構成 CFRP の作製精度と材料特性の考察

Fabrication accuracy and material properties of spiral-laminated CFRP specimens made of UD Prepreg

北海道大学工学系技術センター技術部	○正会員	近藤健太	(Kenta Kondo)
北海道大学大学院工学研究院	正会員	松本高志	(Takashi Matsumoto)

1. まえがき

土木・建築の分野において、構造物の耐久性、維持管理 性を向上させることは重大な課題である。このような背景 の下、炭素繊維強化ポリマー(Carbon Fiber Reinforced Polymer、以下、CFRP と称す)は近年高耐久性を有する 構造材料の一つとして着目されている。CFRP は炭素繊維 を樹脂で固めたものであり、炭素繊維複合材料として様々 な分野において使用されている。その特性として、高強 度・高剛性、軽量、耐腐食性に優れる、等が挙げられる。 これらは従来の構造材料である鋼材およびコンクリート にはない材料特性であり、CFRP は構造物の更なる耐久化 を達成できる構造材料として研究されている。

また一方で、バイオミメティクスの応用も近年注目が高 まっている技術分野の一つである。生物たちが持つ優れた 機能や構造等を模倣することにより、工学等分野において 今日まで新たに多くの技術開発や製品の実用化が進めら れてきている。

その中でも、本研究では生物界の中でも最も強固な組織 の一つであるとされるシャコの前足に着目した。シャコは 捕食のために貝類をたたき割る際、自重の1,000倍以上も の打撃の反力に耐えうる強靭な性質の前足を持っている。 この強靭さを実現している組織は、シャコの前足の表面が 持つらせん状のキチン繊維であることが米カリフォルニ ア大学教授らのチームによって発見された¹⁾。キチン繊維 とは、甲殻類の外骨格によく見られる平行に並んだ繊維で あるが、シャコの場合ではその繊維がらせん状に回転しな がら積層されており、その独特な構造が甲殻のひび割れ防 止の要因と考えられている。図-1に電子顕微鏡を用いて 観察されたシャコ前足部の繊維構造¹⁾を示す。

以上の背景より、本論文はらせん積層構成及び比較の積 層構成について CFRP 試料を作製し、その工程を示すと もに、3 点曲げ載荷実験結果について報告するものである。 曲げ載荷実験結果においては、作製精度である板厚のばら つきが試料の材料特性に与える影響について考察し、既往 の研究から得られた材料実験結果と本研究で得られた結 果とを梁理論に基づいて比較し、板厚の違いが試料の特性 に与える影響を検討することを目的とする。

2. CFRP 試料の作製工程

らせん積層構造 CFRP 試料の作製にあたり、三菱レイ ヨン社製のプリプレグを使用した。プリプレグとは、炭素 繊維基材に着色剤、充填材等を適正な割合で混合した樹脂 を含侵させたシート状のもので、かつ硬化させる前のもの である。含侵してある樹脂の硬化を防ぐため、未使用時は 冷凍庫にてロールを保管する。試料作成時、解凍のため冷 凍庫からプリプレグを取り出し、常温で半日から一日静置 してから使用する。プリプレグには繊維の織り方や材料に よっていくつかの種類に分けられるが、本論文ではシャコ のキチン繊維構造を再現するため、カーボン UD(UniDirectional)プリプレグを採用した。これは炭素 繊維を一方向にのみ揃えたのもので、適当な寸法に裁断し たプリプレグを各積層構成に応じた配向角度に積層して 使用する。表1に使用したプリプレグ及び炭素繊維の物性 値を示す。含侵された樹脂には130℃硬化型のマトリック ス樹脂が使用されている。

図-1 シャコ前足部の繊維構造

本研究では、繊維方向による積層パターンを 3 種類 ([0/90]₂₀、[0/45/90/135]₁₀、[0/18/36…162]4)とし、それぞ れプリプレグを合計 40 枚積層して試料を作製した。まず、 解凍後のプリプレグをカッターで 290×290mm([0/90]₂₀ のみ 200×200mm)の寸法で積層パターンごとに 40 枚ず つ切り出す。切り出したプリプレグにははく離紙およびは く離フィルムがそれぞれ上下面に貼ってある。そのため積 層前に片面のはく離フィルムをはがし取り、切り出したプ リプレグの繊維方向に対して所定の配向角度をつけた上 で貼り合わせる。これを切り出したプリプレグの枚数分繰 り返し、積層完了とした。

積層したプリプレグの成形にはJIS規格²に基づいたオ ートクレーブ成形法を用いた。これは積層したプリプレグ をシート(バッグ)で覆い、バッグ内で内包された空気や揮 発物を真空除去し、加圧、加熱して硬化させる成形方法で ある。本研究では、積層したプリプレグを外側からバキュ ームバッグ、ブリーザーファブリック、穴あきリリースフ ィルムで覆い、シーラントテープで上下面と真空引口の真 空ホースとを密着させた。上記の副資材は全て150℃以上 の耐熱性のものを用いた。真空ホースの先にドライ真空ポ ンプ(アルバック、DA-15D)を接続し、吸引を行った。バ ック内の気密性を確認後、2mm 厚のステンレス板を上下

平成27年度 土木学会北海道支部 論文報告集 第72号

表-1 プリプレグと炭素繊維の物性値

プリプレグ			
総目付(g/m²)	167.1		
繊維目付(g/m²)	124.3		
樹脂含有率(wt%)	25.6		
弾性率(tf/mm ²)	24		
厚さ(mm)	0.103		
CFトウ(炭素繊維)			
引張強度(kgf/mm ²)	500		
弾性率(tf/mm ²)	24.5		
密度(g/cm²)	1.82		

	1	
試料名	積層構成	積層枚
C1-a	[0/90]20	40
C1-b	[0/90]20	40
C1-c	[0/90]20	40
C2-a	[0/45/90/135]10	40
C2-b	[0/45/90/135]10	40
C2-c	[0/45/90/135]10	40
C3-a	[0/18/36…162]4	40
C3-b	[0/18/36…162]4	40
C3-c	[0/18/36…162]4	40

料名	積層構成	積層枚数	幅(mm)	長さ(mm)	厚さt₂(mm)
1-a	[0/90]20	40	40.00	180.10	4.02
1-b	[0/90]20	40	40.00	180.05	4.27
1-c	[0/90]20	40	40.15	180.10	4.06
2-a	[0/45/90/135]10	40	40.00	180.15	4.46
2-b	[0/45/90/135]10	40	40.00	180.05	4.39
2-c	[0/45/90/135]10	40	40.05	180.10	4.41
3-a	[0/18/36…162]4	40	40.00	180.20	4.36
3-b	[0/18/36…162]4	40	40.00	180.25	4.33
3-c	[0/18/36…162]4	40	40.05	180.20	4.42

(a) $[0/90]_{20}$

(b) [0/45/90/135]₁₀ 図-2 プリプレグ積層物における試料位置

(c) $[0/18/36\cdots 162]_4$

図-3 完成した CFRP 試料

に2枚ずつ設置し、万力8つで荷重を付加し、バッグ 全体を加圧した。

加熱での成形のため、積層物および副資材は真空引きし た状態のまま炉に設置する。加熱時、炉の温度設定は2 段昇温とする。硬化スケジュールの1段階目は80℃で1 時間定常、2段階目は130℃で2時間定常とした。昇温速 度はいずれの段階も1℃/min とした。

加熱後の積層物は半日間放置後炉から取り出し、試料作 製のため 180*40mm の寸法に裁断した。このとき積層板 の周囲はトリミングした後、中央付近から試料を作製した。 裁断、切削には精密タレット形立フライス盤(VHR-SD)を 用いた。

本研究では先述した各積層構成あたり3体ずつ作製し、 合計9体とした。図・2に作製した試料の3点曲げ載荷実 験時の載荷点、支点、積層物内での位置を示す。また、表 -2 にマイクロメータ、ノギスを用いて実測した各試料の 寸法を示す。ここでの幅、厚さt2は試料中央の値である。

図-4 3点曲げ載荷試験の様子

3. 3 点曲げ載荷実験

3.1 3 点曲げ載荷実験方法

載荷実験時、各試料下面の載荷点付近にゲージ長 5mm の単軸ひずみゲージを長軸方向に貼り付けた。各試料の長 軸方向を繊維方向 0°とし、載荷実験時は引張面での最外 層を繊維方向0°で統一した。図-3に完成後の試料を示す。 載荷実験装置にはオートグラフ精密万能試験機 (SHIMADZU AG-I 250kN)、荷重の計測にはロードセル (SHIMADZU SFL-250kNAG)を使用した。試料はそれぞ れ両短辺側の単純支持とし、支間長 150mm となるように 設置した。載荷実験時の様子を図・4 に示す。本実験装置 の載荷荷重は 0kN から実験開始とし、軸方向変位が 0.5mm ごとに荷重、ひずみの計測、記録を行った。変位 速度は2mm/minとし、終局状態をもって実験終了とした。 なお一部の実験では試料下部にダイヤルゲージまたはレ ーザー変位系を設置し、たわみの計測も行った。

3.2 CFRP 試料材料特性の理論値算定方法

作成した試料の3点曲げ載荷実験における、JIS規格³⁾ を基に梁理論を用いた圧縮・引張縁での曲げ破壊強さ又は 曲げ強さの算定方法を述べる。曲げ破壊における最大応力 は載荷点における中立軸から最も遠い縁において生じる。 これを縁端応力といい、 σ_b と表したとき、下記の(1)式で 表わされる。

$$\sigma_{\rm b} = \frac{3P_b L}{2bh^2} \tag{1}$$

ここに、 σ_b : 曲げ破壊強さ又は曲げ強さ(MPa)、 P_b : 破壊時荷重又は最大荷重(N)、L:支点間距離(mm)、b:試験片の幅(mm)、h:試験片の厚さ(mm)である。

試料名	厚さt₂(mm)	耐荷重(kN)	最大応力(MPa)	弾性率(GPa)
C1-a	4.02	2.83	985.05	69.89
C1-b	4.27	2.67	862.30	62.09
C1-c	4.06	2.75	924.56	96.98
C2-a	4.46	2.67	755.03	53.93
C2-b	4.39	2.83	826.00	58.65
C2-c	4.41	-	-	-
C3-a	4.36	1.95	577.01	56.04
C3-b	4.33	2.17	651.04	62.50
C3-c	4.42	2.08	598.88	52.80

表-3 3点曲げ載荷試験結果

4. 実験結果

表-3 に材料実験の結果を示す。表中の最大応力は全て 試料圧縮面での圧縮強度を示している。表中の弾性率は、 載荷実験時の応力-ひずみ関係における弾性領域内より、 最小二乗法を用いて評価した値を示している。また、各載 荷実験における応力-ひずみ曲線を図-5 に示す。図は積層 構成ごとのグラフとなっている。なお試料の破壊は、全て 試料区間内で生じており、支点での滑り等は観察されてい ない。また、試料 C2-(c)について、計測器の不具合により、 計測値が得られなかった。

実験終了後試料の載荷点付近の様子を図-6 に示す。い ずれも図上側が圧縮面である。破壊形態として、全ての試 料で載荷点付近での圧縮破壊の後、再び応力上昇が確認さ れた。圧縮面最外層において最大応力時に圧縮破壊が起こ り、順に引張側の層に向かっての曲げ破壊の進行が観察さ れた。また全ての試料において圧縮破壊の亀裂から派生し た層間せん断破壊が見られた。引張面において、一部の試 料のみ圧縮面での圧縮破壊の後、繊維引張破壊が観察され、 試料 C3-(c)については引張面最外層の剥離が見られた。

全体的な実験結果として、層間の配向角度差が細かくなるにつれ、最大応力が低下する傾向が見られた。耐荷重については、試料 C1 と試料 C2 との間に大きな差は見られなかったが、C3 試料では比較的低い値を示した。対して弾性率は C2 試料と C3 試料との間に大きな差は見られなかったが、C1 試料では比較的高い値を示した。

(a) C1-b

(b) C2-b図-6 破壊後試料の様子

(c) C3-a

5. 考察

5.1 試料の破壊形態と積層構成

載荷実験時に全ての試料において繊維の引張破壊では なく圧縮面での圧縮破壊が見られた点について、これは炭 素繊維が圧縮強度よりも引張強度が高い材料特性を有し ていることが原因として考えられる。また、層間配が細か くなるにつれ耐荷重、最大応力が減少する傾向が見られた ことについて、曲げ実験における試料内の長軸方向に対し て強度をもつ繊維方向を有した層が、層間の配向角度差を 細かくするごとに少なくなり、曲げ方向に対する応力が小 さくなったためと考えられる。

5.2 板厚の違いが材料特性に与える影響

表-4 に作成した試料の載荷実験時の両支点、載荷点付 近の厚さと、同一試料内での板厚の平均、標準偏差を示す。 試料両端の支点付近での板厚をそれぞれ t₁、t₃とした。各 試料の板厚には標準偏差 0.01~0.19 のばらつきが見られ た。試料の厚さに差が生じた原因として、以下のものが考 えられる。①積層物への加圧作業の際、万力を用いたこと によりバッグ内部にかかる荷重が完全には均一とならな かったため。②加熱の際に樹脂の硬化課程が繊維方向や積 層板内の位置関係により異なり、完成時にムラとなったた め。③フライス盤による積層板切削の際、アーム固定時の ブレードと試料との摩擦により試料内部で変形が起こっ たため。

載荷実験結果による最大応力値と載荷点付近の板厚 t2 を参照すると、板厚が比較的薄い試料について、最大応力 がより高い値を示す傾向が見られた。これについて、同一 積層枚数で板厚に差が生まれるということは、すなわちプ リプレグに含侵された樹脂による層間の接着力に差が生 じていると考えられる。よって板厚が薄くなるのに伴い繊 維組織の強度が高まり、材料実験結果に影響が及んだと推 察される。また、試料内での板厚のばらつきについて、支 点と載荷点での板厚の差が大きくなった C1-(a)及び C1-(c)試料について、材料実験の結果前者は後者よりも高 い弾性率が得られた。前者は両支点での板厚に差がほとん ど無いが、後者は両端の板厚に 0.28mm の差が生じてい る。すなわち C1-(c)試料については、先述した通り載荷点 付近において層間の接着が強固であることに加え、両端で の均斉が取れていることから、結果として高い弾性率を示 したと考えられる。

試料名	tı(mm)	t₂(mm)	t₃(mm)	平均(mm)	標準偏差
C1-a	4.39	4.02	4.11	4.17	0.16
C1-b	4.37	4.27	4.37	4.34	0.05
C1-c	4.47	4.06	4.47	4.33	0.19
C2-a	4.61	4.46	4.47	4.51	0.07
C2-b	4.48	4.39	4.51	4.46	0.05
C2-c	4.49	4.41	4.48	4.46	0.04
C3-a	4.39	4.36	4.34	4.36	0.02
C3-b	4.39	4.33	4.31	4.34	0.03
C3-c	4.42	4.42	4.39	4.41	0.01

表-4 試料の板厚、平均値と標準偏差

5.3 既往の研究結果との比較

表-5 に既往の研究 ⁴によって得られた箱形断面 CFRP 梁の材料実験結果を示す。本研究で得られた CFRP 試料 の材料実験値と比較すると、圧縮強度、弾性率ともに本研 究での結果の方が高い値を示した。既往の研究では、成形 作業の際に、真空ポンプによる減圧の上成形する VaRTM 成形法と呼ばれる工法が用いられている。それに対し、本 研究で用いたオートクレーブ法は成形の際に荷重を付加 している。この作製工程の違いから、本研究で作製した試 料はより層間の接着力が高まった事により、比較的弾性率、 最大応力ともに高い値を示したと考えられる。

表-5 箱型断面 CFRP 梁の材料試験結果

梁軸方向圧縮試験				
試験体名	CP'	QI'		
積層構成	[0/90]	[0/45/-45/90]		
圧縮強度 σ ₁c (MPa)	352	272		
弾性率 E₁(GPa)	59.8	36.3		

あとがき

本研究では、らせん積層構成を有した CFRP 試料を作 成し、それを用いた3点曲げ載荷実験を行うとともに、板 厚の違いが試料の材料特性に与える影響を検討したもの である。得られた知見を以下に示す。

- (1) 作製した試料には、板厚に標準偏差 0.01~0.19 のば らつきが見られた。これは成形の過程で生じたものと 考えられる。しかし、試料両端の均斉が取れている場 合と試料両端で板厚の差が大きい場合とを比較した ところ、最大応力について前者がより高い値を示す傾 向が見られた。このことから、試料作製の際には試料 全体の板厚が均一となるように配慮することで、より 材料特性に優れた CFRP 試料を作製できると考えら れる。
- (2) らせん積層構成について、本研究で得られた材料実験 結果として耐荷力、曲げ強度に関しては他の積層構成 のものよりも低い値を示す結果となった。一方でらせ ん積層構造は CFRP が有する脆性挙動が改善される 等の利点があり、今後の研究においてはより多くの試 料を作製し、曲げ載荷実験や耐衝撃実験等により、詳 細な材料特性の解明が期待される。

参考文献

1)L.K.Grunenfelder,N.Suksangpanya,C.Salinas,G.Milli ron,N.Yaraghi,S.Herrera,K.Evans-Lutter-odt,S.R.Nutt, P.Zavattieri&D.Kisailus:Bio-inspired impact-resistant composites, ActaBiomaterialia,

2) 日本工業標準調査会審議 日本規格協会発行 炭素繊 維強化プラスチック試料の作製方法 JIS K 7072 平成 3年11月1日制定

3) 日本工業標準調査会審議 日本規格協会発行繊維強化 プラスチック・曲げ特性の求め方 JIS K 7017 平成 11 年 10 月 20 日制定

4) 櫻庭浩樹・松本高志・堀本歴・林川俊郎 VaRTM 成形 による箱型断面 CFRP 梁の曲げ挙動に及ぼす積層構成の 影響、土木学会構造工学論文集 Vol.58A(2012 年 3 月)