土の凍結膨張における熱流直交方向の発生応力測定方法の開発

Evaluation of Measurement Methods for Lateral Pressure developes Normal to Heat flow during Frost Heave Test

北海道大学工学部環境社会工学科	\bigcirc	学生会員	天沼稚香子	(Chikako Amanuma)
北海道大学大学院工学院		学生会員	鄭好	(Hao Zheng)
北海道大学大学院工学院		学生会員	大村健祐	(Kensuke Omura)
清水建設株式会社		正会員	米山一幸	(Kazuyuki Yoneyama)
北海道大学大学院工学研究院		フェロー	蟹江俊仁	(Shunji Kanie)

1. はじめに

50 年来, 我が国では上下水道や電力などのライフラ イン構築からトンネル掘削の地下工事まで凍土のもつ 遮水性,高い強度,環境影響が少ないなどの特長から 地盤を人工的に凍結させる地盤凍結工法が広く利用さ れてきた. また, LNG 地下タンクのような極低温の液 体を地中に貯蔵する構造物では、周辺の地盤が凍結す るので地盤凍結工法同様凍土を人工的に管理している. 一般に凍上現象は熱流方向に発生・成長するアイス レンズによって膨張する現象と考えられている. 凍上 量と拘束圧の1次元的な評価には、室内凍上試験によ って求められる実験式である高志の式 ¹⁾が広く用いら れてきた.しかし、上田²⁾によると「凍結工法では、 地盤内の有限な領域を凍結させるため、凍結膨張変位 は熱流方向だけではなく、その直角方向にも発現する」 とされている.現在の凍結工法の技術は長年の研究と 施工実績から成り立っているが、熱流直交方向の膨張 に関する研究はほとんどない. 今後はさらに複雑な都 市部での凍結工法が増えることが予想されるため、周 辺の構造物や地盤に対するさらなる配慮が必要となる. すなわち,もし,熱流直交方向に発現する応力の発生 機構の解明や応力予測の精度を上げることができれば, 地盤凍結工法のさらなる発展につながる.

このような趣旨から、本研究では凍上試験の際に熱 流直交方向に発現する応力を、できるだけ正確に測定 することができる計測方法の開発について報告する.

2. 計測器の選定

今回は、凍上の際の熱流直交方向に発現する応力の 計測器として、液体圧力を測る小型水圧計(以下、水圧 計:共和電業 PS-50KDM2)、および凍上セルを構成す る積層アクリルリングの外周面周方向のひずみを測る ひずみゲージ(4 アクティブゲージ直交配置法:以下, SG)の2 種類を選定した.この2 種類の計測器の性能 を次章以降に比較評価する.

次に、供試体側方を拘束する凍上セルの材質として、 上記 SG を用いるためアクリル外周周方向に必要最小 限のひずみを発生し、且つ供試体と類似した熱伝導率 を持つアクリルを採用した.アクリルリング(以下、リ ング)の半径方向の厚さは、水圧計が実装できる厚さを 考え 15 mmに設定した.内圧を液圧とした厚肉円筒理 論³⁾と凍上の際に予測できる側圧の増加量⁴⁾の関係か らも、この厚さは、リング外周のひずみが有意に計測 できることが予想された.ただし、凍上に際して発現 する側圧増加のメカニズムが現時点では不明なため、 内圧を液圧として検討した前述の予想が実際に成立す るかは今後の課題である.

ここに使用する凍上セルは図 – 1 に示すようにアク リルリングを積層した構造となっている.

図 – 1 多重アクリルリン

リング1枚の厚さは10mm で,リングとリングの間 は厚さ1mmのシリコンシ ートを止水性を目的とし て,シリコンコーキング 剤で接着してある.リン グ各々に温度計とひずみ ゲージ,3個のリングに は同図に示すように水圧 計も設置した.

グによる凍上セル 3. 計測器の検定

凍上試験機を用い,凍上セル内の水圧を変動させる 方法による圧力検定と,凍上セル内の水の温度を変動 させる方法による温度検定を行い,リングに取り付け た水圧計と SG のキャリブレーションを行った.

3.1 圧力検定

凍上セル内の水圧は 0 - 200kPa までは 50kPa ずつ, それ以降は 100kPa ずつ 500kPa まで加圧を行い,同様 に圧力を下げた際の水圧計と SG の挙動をみた.この 結果,印加圧力に対応した読み値を水圧計および SG 共に計測した(図 − 2 参照).

図 -2 内圧変化による小型水圧計・SGの読み値 図 -2 に示す圧力計の読み値とリング外周ひずみの 関係を図 -3 に示す.回帰線は線形でどれもほぼ同じ 比例定数(3.7×10⁻⁷)をもつことがわかる.

図 -3 SG と水圧計で計測した内圧の関係

3.2 温度検定

凍上セル内の水温変化による,水圧計および SG の 測定値の変化を記録した.温度の変化速度としては, 一般的な凍上試験の温度勾配(0.1°C/mm)と凍結速度(1.0 mm/hr)から,0.1°C/hr で凍上セル内温度を下げる検定条 件を設定した.具体的には,20時間でリング内の水温 を 8.0°Cから 6.0°Cへ 2°C下げた.その結果,水圧計の 読み値の変化及び SG のひずみから求まる内圧の初期 値からの変化を図 – 4,図 – 5に示す.尚,SG のひ ずみ読み値から圧力への変換は,図 – 3 で得られた回 帰線の傾きから求めた.水圧計および SG の計測値は 温度変化に対して僅かに変化する傾向を示した.

図 -4 温度変化による水圧計の温度ドリフト

図 -5 温度変化による SG の温度ドリフト

4. 考察

図 – 3 に示す様に水圧計と SG に依る計測結果は良 好な線形関係が確認された.このため,SG は市販の 水圧計と同程度の線形な変換特性を持つことが確認さ れた.

温度検定の結果から、水圧計では SG より大きいば らつきが見受けられる. この原因としては、今回使用 した水圧計が、受圧面の見掛け剛性を高くする意図か ら、実際の試験で計測する圧力よりも高い圧力用の液 圧計であるためと考えられる.水圧計の温度ドリフト 量は、3kPa/℃以内と小さい.凍上試験の際に期待して いる側圧増分は数百 kPa⁴⁾であるので、このドリフト量 は試験の際に無視できるといえる.

これに対し, SG から求まる圧力は水圧計より大き な線形的な温度ドリフトがみてとれる.具体的には最 大で約17 kPa/Cの変化が出ている.これは、リング外 周面が低温室に暴露されているため、凍上セルの内側 と外側の温度差による熱応力が発生しているためと考 えられた.紙面の都合で詳細は割愛するが、凍上セル の外周部をさらにアクリルセルで覆い、凍上セルの外 面を断熱することにより、この値は1/4 程度に改善さ れた.凍上試験の際は、供試体高さが10 cmのとき最 大10℃の温度変化を与えることになるため、40kPa ほ どの温度ドリフトが出ることが予想される.

5. まとめ

水圧計は水圧計測および温度ドリフト特性共に良好 な挙動を示しているため、凍上試験の際の一つの凍上 セル内圧力の計測方法の候補と考える.しかし、今回 用いた圧力計はダイアフラム型の受圧面を持つ液圧用 の圧力計で、果たして液体ではない凍土の圧力を測れ るのかという点は疑問が残る.

SG に関しては,温度ドリフトが課題だが,温度ド リフトの線形関係を用いてリング外周方向ひずみを補 正することができると思われる.いずれにせよ,今回 は,水圧による検定において,どちらも良好なデータ が得られる計測法としての可能性を確認したといえる. ただし、実際の凍上試験に於いては,計測対象は液圧 ではなく凍土の膨張圧力であるため,凍上セルである リングと凍土圧の相互関係が問題となる可能性がある.

今後は本報告で検討した 2 つの計測方法の他, タク タイルセンサー(2 次元圧力センサー)による方法も 加え,実際の凍上試験に於けるパフォーマンスを比較 検討する.

参考文献

- 高志勤,生賴孝博、山本英夫、岡本純:砂凍土の 一軸圧縮強さに関する実験的研究、土木学会論文 報告集, No. 302, pp. 79-88, 1980
- 上田保司:土の凍結膨張による地盤変形および発 生応力の予測と対策に関する研究, pp. 6, 2007
- 3) 前川晃, 辻峰史, 高橋常夫, 加藤稔: 配管表面ひ ずみを用いた管内圧力脈動の測定方法の考察, 2013
- 弓削輝之, Tamrakar, 赤川敏: 凍上試験における 側方摩擦の評価, 2002