津軽海峡における流況およびエネルギー賦存量の季節変動特性

Seasonal Fluctuations of Flow Characteristics and Energy Potential in Tsugaru Strait

函館工業高等専門学校	○学生会員	本間	翔希 (Shouki Honma)
函館工業高等専門学校	正会員	宮武	誠 (Makoto Miyatake)
北海道大学大学院工学研究院	正会員	猿渡	亜由未 (Ayumi Saruwatari)

1.はじめに

近年の海洋再生エネルギーに脚光が浴びている中、日本周 辺海域における潮流や海流の流況特性やエネルギー賦存量を 現地観測や数値解析により評価する研究が活発化している1) 2)3). 新エネルギー・産業総合開発機構 (NEDO) が推定した 日本周辺海域における海流・潮流に関するエネルギー賦存量 ⁴⁾によれば、津軽海峡は他の海域の中でも高く推移すること が示されている.しかし、上記の検討は津軽海峡全域での流 速の代表値を用いた概略値であり,実際に津軽海峡を流れる 海流や潮流を利用して発電を行うにあたり、適地選定や計画 策定するためには、津軽海峡を流れる海流・潮流の年間通じ た流況特性を把握することが重要である. 潮流・海流発電を 念頭に置いた津軽海峡の流況特性やエネルギー賦存量の推定 に関しては、既に数多くの研究が行われており、例えば、猿 渡ら⁵⁾は非静水圧3次元モデルである MIT General Circulation Model 78) を用いて、津軽海峡における潮流エネルギー・リ ソースに与える海流の影響を数値解析を主体として考察して いる.

本研究は、本間ら^のが行った方法と同様の方針のもと、年 間を通じた津軽海峡の流況観測を実施し、恒流と潮流の流況 およびエネルギー賦存量の季節的変動特性を検討する.

2.津軽海峡における流況に関する現地観測

観測は、図-1のSt1に示す汐首岬沿岸海域(水深-25m地 点)を対象として春期(2013/3/18~2013/4/18)の31昼夜、夏期 (2013/7/31~2013/9/4)の35昼夜、秋期(2013/10/19~2013/12/4) の45昼夜、冬期(2013/12/4~2014/1/20)の47昼夜にわたり実 施し、計測項目はADCP(超音波式ドップラー流速計)による 多層流速・流向である。当該海域の水深を上層、中層、下層 の3層に分割し、観測期間中の各層における流速・流向を測 定した。流況観測の諸元を表-1に示す。流速・流向データは サンプリング間隔を1秒とし、20分間の連続計測を1時間間 隔(定時)で行い収集した。

3.年間を通じた津軽海峡の流況特性

現地観測によって得られた流速・流向データのうち,春期 の観測結果に関しては既に本間らのによって,その流況特性 が解明されている.そこで,年間を通した流況の変動特性を 把握するため,夏期,秋期,冬期の流況特性について検討する.

図-2は、各層の観測流速に調和分解を施し、日周期分潮 K 1および O1 の合成潮流楕円を描いたものを示す.これまで の検討から日本海側と太平洋側の潮位差によって生じる津軽 海峡の潮流は、全層にわたり日周期分潮の影響が大きいこと を明らかにしている.冬春期における日周期分潮の潮流楕円 は北西 - 南東方向へ長軸方向を有し、図中の矢印で示す観測 期間内で得られた恒流流速ベクトルの流向にほぼ一致する. この恒流の主成分は、これまでの検討から主に海流であるこ とがわかっている.この結果、北西方向へ向かう日周期の潮 流成分は恒常的に南東方向へ向かう海流に打ち消され、この 期における観測流速ベクトルは全層ともに南東方向へ消長を 伴い、周期的な変動を有する流況となる.一方、夏秋 期において、潮流楕円は全層ともに冬春期に比べて軌道長 半径が萎縮し、日周期分潮の潮流流速は弱まり、逆に恒流 流速が大きくなる傾向にある.また、上層において潮流楕 円の長軸方向が大きく変化することで、恒流成分の流向と

図-1 流況観測位置(等深線の単位:m)

表-1 流況観測の諸元

観測位置	函館市汐首岬沖合約 800m(水深 -25m) 北緯 41° 43' 1.9″ 東経 140° 56' 30.7″
観測期間	2013年3月18日~2013年4月18日(春期) 2013年7月31日~2013年9月4日(夏期) 2013年10月19日~2013年12月4日(秋期)
	2013年12月4日~2014年1月20日(冬期)
使用機器	ADCP(超音波式ドップラー流速計) 発信周波数:300kHz
観測層	上層 : 海底から 23.3m 中層 : 海底から 12.2m 下層 : 海底から 3.2m
測定間隔	60分(定時)
測定時間	20分
サンプリング間隔	1秒

平成26年度 土木学会北海道支部 論文報告集 第71号

相違する.この期の上層の観測流速ベクトルは冬春期と同様 に南東方向へ向かう変動を伴う流れが形成されるものの不規則 で、かつ冬春期でみられた周期性は消失する.

同図中には、観測期間中の変動流速強度を示す観測流速の二 乗平均平方根(以下, RMSと略す)を表示する. 冬春期の RMS は、 全層ともに合成前における日周期分潮の潮流楕円の軌道長半径 にほぼ等しく、この期に変動する流速成分は、ほぼ日周期の潮 流流速成分に支配されていると考えられる. 一方、日周期分潮 の潮流成分が弱まる夏秋期の RMS は、中層、下層で冬春期と ほぼ同様な値となっているが、上層では冬春期に比較して増大 し、潮流楕円の軌道長半径と比較しても大きくなる傾向にある. このことから、夏秋期では潮流以外の流速の変動成分が流れに 大きな影響を及ぼしていることが考えられる.

図-3は、観測期間中における気象庁による日本海側(深浦) および太平洋側(下北)の実測潮位において日本海側から太平 洋側を差し引いた潮位差と各層の合成流速との相互相関をとっ たものを示す.年間を通じ、中層及び下層では潮位差が生じて から約3時間の時間遅れで潮流が応答する流況特性を有してい る.一方,流速の変動強度の高い夏秋期の上層では,日本海側 と太平洋側の潮位差に対して,上述の中層および下層よりも更 に3時間,潮位差より6時間遅れで応答していることがわかる.

図-4では、図-3で示す応答時間を考慮した潮位差と各層の 合成流速の相関をとったものを示す.応答時間が6時間程度で あった夏秋期の上層を除くすべての期では合成流速と潮位差に 良い相関がみられることから、この期の観測流速は潮位差によ り生じる日周期分潮の潮流成分による影響が大きいといえる. これに対して、応答時間が6時間と大幅に遅れる夏秋期の上層 では、相関が著しく低下しており、潮流成分以外の流速の変動 成分が、この期の流れに与える影響が大きいことがわかる.ま た、前述の観測流速による RMS において高い変動強度が示さ れることや、潮流と海流の流向が異なっていることを勘案する と、夏秋期の上層で生じる潮流以外の変動流速成分は、恒流や 潮流の流速・流向、ならびに日周期分潮の潮流の位相に大きな 影響を及ぼすことが推察される.

図-5 では、各観測期間中の上層で得られた北方流速および東方流速に FFT によるスペクトル解析を行った結果を示

す. 冬春期では,パワースペクトルは周期10秒以下の高周 波成分で多少変動するものの,24時間および12時間周期で 明確なスペクトルピークがみられる.一方,夏秋期では,冬 春期と同様に24時間および12時間周期でピークとなるもの の,そのピーク値は冬春期より減衰し,12時間周期以下の短 周期成分が増加することで,冬春期に比べ日周期および半日 周期の潮流による流れの影響が小さくなる傾向がみられる. このことから,夏周期では日周期および半日周期の潮流の影 響が弱まり,高周波成分のピーク値と均衡する事によって, 全エネルギー密度に占める高周波成分の割合が相対的に大き くなり,観測流速の流れに影響を及ぼしていると考えられる.

4. 津軽海峡の季節的なエネルギーポテンシャルの評価

図-6は、前述の調和分解で得られた K1 および O1 分潮 を合成した日周期分潮流速を用いて、観測期間中のエネル ギー密度 D[W/m2] を次式によって求めた結果を示す.

$$D = \frac{1}{2}\rho \left| U^3 \right| \tag{1}$$

ここに, ρは海水の密度であり, 1030kg/m3 とした. Uは 各層の流速を示す. エネルギー密度の位相は年間を通じて 全層ともにほぼ同位相となっており、潮流楕円の軌道長半 径の小さな差異が大きな差となって現れる結果となる. 冬 春期では日周期の潮流流速が大きく、軌道長半径の最も大 きい中層で、エネルギー密度はこの期で最大となる 80[W] 程度に達する. 一方、日周期の潮流が弱まる夏期では冬春 期に比べエネルギー密度は1/8以下に低下するが、 秋期 にかけて潮流が強まることで、下層から上層に向かって潮 流流速が増加し、最大で 20[W] 程度となる.

図-7は、主要4分潮に恒流を合成したエネルギー密度 を示す.冬春期は全層で同様の位相を有しており、潮流と 恒流の流向が一致することで、高いエネルギー密度を示 す.この期における潮流楕円の軌道長半径は上層と中層で ほぼ同程度となるものの、恒流の最も大きい中層で最大と なり、エネルギー密度は1000[W]に達する.一方、潮流が 最も減衰する夏期において恒流と合成したエネルギー密度 は、恒流の流向が潮流と異なる上層では大きく低下するが、 流向が一致し、恒流流速が大きく発達する中層では最大 800[W] となり、冬春期に迫るエネルギー密度の最大値が 発生している.秋期では、夏期から潮流流速が強まるとと もに、上層で恒流流速が発達することで、エネルギー密度 は潮流流速と恒流流速の足し合わせが最も大きくなる上層 で1000[W] におよび、中層においても同程度のエネルギー 密度を示す.夏期の上層においてみられるエネルギー密度 の大幅な低下や、下層で年間通じて低く推移することを勘 案し、中層に着目すればエネルギー密度は最大で1000[W] 程度となり、24時間の平均値では200[W] 程度で安定する.

5.結論

本研究で得られた結論を要約すると、以下のとおりである. (1) 各層の観測流速を調和分解して得られる日周期分潮の潮流 楕円より, 潮流楕円の長軸方向が恒流流速ベクトルの流向に ほぼ一致する冬春期では、観測流速ベクトルは全層ともに南 東方向へ消長を伴い、周期的な変動を有する流れ特性を有し ている.一方,夏秋期では、日周期分潮の潮流流速は弱まり、 逆に恒流流速が大きくなることに加え、上層において潮流楕 円の長軸方向が大きく変化することで、恒流成分の流向と相 違し、冬春期と同様に南東方向へ向かう変動を伴う流れが形成 されるものの、冬春期でみられた周期性は消失する. 以上によ り,津軽海峡の流況は、冬春期・夏秋期に分類することができる. (2) 日周期の潮流楕円の長軸方向が恒流成分の方向と異なる夏 秋期の上層では、変動流速強度が高く、潮位差に対する合成 流速の応答時間が大幅に遅れる.これは、冬春期に比べ日周 期および半日周期の潮流による流れの影響が小さくなり, 全エ ネルギー密度に占める割合が相対的に大きくなる高周波成分に よる観測流速への影響であると考えられる.

(3) エネルギー密度は、潮流流速が大きく恒流と潮流の流向が 一致する冬春期で最も高く、全層でほぼ同様な位相になる.一 方、潮流が弱まる夏期では、一時的に低下するが、夏期か ら秋期にかけて潮流が再度強まるとともに、恒流が発達す ることで最大エネルギー密度は冬春期と同程度になる.

(4) 潮流・海流発電の発電機の設置水深は、夏期の上層においてみられるエネルギー密度の大幅な低下や、下層で年間 通じて低く推移することを勘案し、年間通じて高いエネル ギー密度を示す中層(海底より12.2m)付近が適している.

謝辞:現地観測を行うにあたり、函館市の本吉勲氏、並びに、 同市の溝江隆紀氏には、多大なご協力を得た.ここに感謝の意 を表す.

参考文献

1) 井内国光・中村孝幸・安井孝・二宮一成 (2011): 来島 海峡周辺海域における潮流エネルギー賦存量の推定,土 木学会論文集 B3(海洋開発),vol.67,No.2,pp.I_1901-I_1905.

 小牧祐幸・山城徹・城本一義・仁科文子・中村啓彦・ 広瀬直毅 (2013):海流発電適地選定のためのトカラ海峡 周辺海域における黒潮潮差,土木学会論文集 B3(海洋開 発),vol.69,No.2,pp.I_109-I_113.

3) 猿渡亜由未・田島悠(2012): 潮流エネルギーの 平面及び鉛直分布の特徴, 土木学会論文集(海岸工 学),B2,vol.68,No.2,pp.I_1271-I_1275.

4) 独立行政法人新エネルギー・産業技術総合開発機構 (2010):平成22年度成果報告書風力等自然エネルギー技 術研究開発/洋上風力発電等技術研究開発/海洋エネル ギーポテンシャル把握に関する業務, pp.23-26.

5) 猿渡亜由未・田島悠・米子佳広・齊藤樹 (2013):津軽 海峡の潮流エネルギーリソースに海流が与える影響,土 木学会論文集 B2 (海岸工学),vol.69,No.2,pp.I_1296-I_1300.

6)本間翔希・宮武誠・猿渡亜由未(2014):潮流海流発電 に向けた津軽海峡における流況特性およびエネルギー 賦存量に関する研究,土木学会論文集 B2(海岸工学), vol.70,No.2,pp.I_1291-I_1295.

7)Marshall,J.,C.,Hill,L.Perelman and A.Adcroft(1997a):Hydrostati c,quasi- hydrostatic,and nonhydrostatic ocean modeling,J.Geophy. Res. Oceans,102,C3,pp.5733-5752.

8)Marshall,J.A.Adcroft,C.Hill,L.Perelman and C.Heisy(1996b):A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J.Geophys.Res. Oceans, 102, C3, pp. 5753-5756