全球気候モデルを用いた人間活動が大気大循環 に与える影響の評価

Evaluation of the human impacts on the atmospheric circulation using the Global Climate Model.

北海道大学大学院工学院 ○学生員
北海道大学大学院工学研究院 正 員
The State University of New York at Albany
Michigan State University

竹内大輝 (Daiki Takeuchi) 山田朋人 (Tomohito J. Yamada) Craig R. Ferguson Yadu N. Pokhrel

1. はじめに

大気は海洋,陸域と水を媒介としてエネルギーのやり 取りを時々刻々と行っている. 大気と地球全体の面積の 約7割を占める海洋間のエネルギーのやり取りである大 気海面相互作用については多くの議論がなされてきてお り、エルニーニョ現象による気候変動はその一例である. 一方、大気と陸域間のエネルギーのやり取りである大気 陸面相互作用が降水発生メカニズムにどのような影響を 与えているのかについて近年活発に議論がなされている. 例えば, Koster et al.¹⁾は複数の全球気候モデル(AGCM) による数値実験により,半乾燥地域である北アメリカの グレートプレーンズ、インド、中国東部、アフリカサヘ ルにおいて夏季土壌水分の平年偏差が降水量に影響を与 えることを示した. Ferguson et al.²⁾ は再解析及び衛星 観測データを用い、夏季土壌水分量の平年偏差が降水量 に与える影響を評価したところ, Koster et al.¹⁾ が示し た地域と同様の地域において陸面は大気の振る舞いに有 意な影響を与えることを示した.また,現実的な土壌水 分量の地域分布は西サヘル地域におけるモンスーンの再 現性を向上させるとの結果も指摘されている³⁾.

我々人類が生活する陸域に存在する水は灌漑農業や地 下水の汲み上げ、河川水の工業利用、ダムによる河川流 量の調節といった人間活動から大きな影響を受けている ことを忘れてはならない. Wada et al. 4)は水文モデルに よって、涵養量を上回る地下水使用量が年々増加してい ることを指摘した. Hanasaki et al.^{5),6)} は人間活動の影 響を全球スケールの陸面課程モデルに導入し、Pokhrel et al.⁷⁾はこの人間活動の影響を陸面課程モデルの一つ である MATSIRO(Minimal Advanced Treatment of the Surface Interaction and Runoff; Takata et al.⁸⁾ に反映させた. このモデルによるシミュレーションによって, Pokhrel et al.⁹⁾ は海面水位上昇に非持続的な地下水利用が影響 していることを定量的に示した. さらに, Koirala et al. ¹⁰⁾は MATSIRO に深層地下水の変動を正確に表現する ため、土壌層数を拡張し、Pokhrel et al.¹¹⁾ では前述の人 間活動の影響を反映させた MATSIRO に深層地下水の汲 み上げ効果を導入した.

本研究の目的は AGCM に Pokhrel et al.¹¹⁾の陸面課程 モデルを組み込み,人間活動の影響が全球規模の大気の 振る舞いにどのような影響を与えるのかを議論すること である.現在はその前段階として,人間活動の影響を考 慮していない従来の MATSIRO に上述の土壌層数を拡大 したものをカップリングした AGCM を用いて予備実験 を行っている段階である.2章に使用したモデル及びデ ータを記し,結果と考察を3章で述べ,4章にまとめを 記す.

2. 使用モデルとデータ

2.1 全球気候モデル(MIROC AGCM)

本研究において使用した AGCM は Model for Interdisciplinary Research on Climate (MIROC)であり、同 モデルは Atmosphere and Ocean Research Institute (AORI), National Institute for Environmental Studies (NIES), Frontier Research Center for Global Change (FRCGC)によっ て共同開発された. MIROC の基礎方程式は球面(λ, φ), σ座標におけるプリミティブ方程式であり, 連続の式, 静水圧の式、運動方程式、熱力学の式、水蒸気の式であ る¹²⁾. MIROC はこの基礎方程式を用いて全球 3 次元大 気を物理的法則に基づいて記述する数値モデルである. 物理過程としては積雲対流過程、大規模凝結過程、放射 過程,鉛直拡散過程,地表フラックス,地表面・地中過 程,重力波抵抗を考慮している.座標系は経度λ,緯度 φ ,正規化気圧 $\sigma = p/p_s (p_s(\lambda, \varphi)$ は地表面気圧)を用い, それぞれ直交するものとして扱う. ただし, 地中の鉛直 座標には z を用いる.経度は等間隔に離散化され、以下 のように表される.

$$\lambda_{i} = 2\pi \frac{i-1}{I} i = 1, ..., I-1$$
 (1)

緯度は Gauss 緯度 φ_j であり, Gauss-Legendre 積分公式か ら導かれる.

モデルに与える初期値は大気状態量(東西風,南北風, 温度,地表気圧,比湿,雲水量),陸面状態量(地中温度, 土壤水分,積雪量,地表面温度,河川水量),海面状態 量(海面水温,海氷質量,氷面温度,氷面積雪量),カッ プラー(地表面温度,地表アルベド)の4種類に分類され る.尚,予報変数は表-1の通りである.

2.2 陸面過程モデル(MATSIRO)

本研究において使用した陸面過程モデルは MATSIRO であり、同モデルは MIROC の陸面境界条件を計算する モデルとして開発された⁸⁾. MATSIRO は大気陸面間の

表-1	全球気候モ	デルの)予報変数. 7	Ι, φ, σ,z はそれ
	ぞれ経度,	緯度,	無次元気圧	, 鉛直深を示す.

予報変数	記号(座標系)	単位
東西風速	U (λ, φ, σ)	[m/s]
南北風速	V (λ, φ, σ)	[m/s]
気温	Τ (λ, φ, σ)	[K]
地表気圧	p _s (λ, φ)	[hPa]
比湿	q (λ, φ, σ)	[kg/kg]
雲水混合比	Ι (λ, φ, σ)	[kg/kg]
地中温度	$T_g(\lambda, \phi, z)$	[K]
地中水分	$W_g(\lambda, \phi, z)$	[m/m]
積雪量	W _γ (λ, φ)	[kg/m ²]
海氷厚	hl (λ, φ)	[m]

水蒸気,エネルギー,運動量を物理的法則に基づいて表 現している.土壌は厚さ 5cm, 20cm, 75cm, 1m, 2m の5層,積雪層は最大3層,キャノピー層は1層である. MATSIRO の表現過程は(a)気孔の開閉による蒸散の制御, (b)植生群落内の放射過程と大気の渦運動による熱・水 輸送,(c)植生による降水の遮断とその蒸発,(d)植生 上・地面上の積雪と融雪,特に積雪内の熱伝導と積雪水 の再凍結,(e)雪の変質による日射反射率の変化,(f)斜 面の勾配を考慮した地表面流出と地中流出,(g)土壌中 の熱.水輸送,土壌水分の相変化である.ただし,フラ ックスは積雪部及び無積雪部分に分けて計算される. MATSIRO の予報変数及び診断変数は表-2 の通りである.

2.3 人間活動モジュール

前述の Pokhrel et al.⁷⁾では人間活動として作物成長, 灌漑用水,ダム貯留,環境用水モジュールを MATSIRO に組み込んだ.また,河川網モジュールには TRIP(Total Runoff Integrating Pathways)¹³⁾を採用している.作物成長 モジュールは SWIM(Soil and Water Integrated Model)¹⁴⁾に 基づいており,18 種類の作物種を考慮している.灌漑 水要求量は根域土壤水分(上から 2m)の不足分から推定 されており,以下の式で表わされる.

$$I = \frac{\rho_{w}}{\Delta t} \sum_{k=1}^{4} \{ \max[(TSMC - \theta_{k}), 0] D_{k} \}$$
(2)

ここで、TSMC は対象土壌水分量 $\alpha \times \theta_s$ より求められ、I は灌漑水要求量、 ρ_w は水の密度、 Δt はモデルのタイム ステップ、 θ_s 、 θ_k はそれぞれ最大限含むことのできる土 壌水分量と実際の土壌水分量、 D_k は k 番目までの土壌 層の厚さである. α は定数で、作物種が米の場合 1、そ の他の場合 0.75 である.

2.4 深層地下水の表現

深層地下水の表現は Yeh and Eltahir¹⁵⁾及び Koirala et al.¹⁰⁾ に基づく.地下水位(WTD)は地下水涵養量と基底流

表-2 MATSIRO モデルの予報変数及び診断変数.

変数	記号	単位
予報変数		
地表面気温	T_{s}	[K]
キャノピー層気温	T_{c}	[K]
地中温度	T_{g}	[K]
雪中温度	T_{sn}	[K]
土壌水分	θ	[m³/m³]
凍土中の水分	θi	[m³/m³]
キャノピー 層水	W _c	[m³/m²]
診断変数		
キャノピー 層表面の 顕熱フラッ クス	$H_{\rm c}$	[W/m²]
地表面の顕熱フラックス	H_g	[W/m²]
遮断蒸発	Ei	[Kg/m²/៖]
蒸散	Et	[Kg/m²/s]
地面からの蒸発	E_{g}	[Kg/m²/s]
下向き放射	R_d	[W/m²]
流出	R ₀	[Kg/m²/៖ 1

出量から以下のように定義される.

$$S_{y}\frac{\Delta d_{gw}}{\Delta t} = R_{gw} - Q_{gw}$$
(3)

 S_y は比産出率, d_{gw} は WTD, R_{gw} は地下水涵養量, Q_{gw} は基底流量である. 比産出率は Pokhrel et al. ¹¹⁾が採用した 0.15 m³ m³ を用いた. これはオガララ帯水層における比産出率に基づいている ^{16), 17)}. R_{gw} は Darcy 則に基づき,

$$R_{gw} = K_u \left[\frac{d\psi}{dz} - 1 \right] \tag{4}$$

で与えられる.ここで、 K_u は土の透水係数、 $d\psi$ は飽和 帯水層と不飽和土壤層の吸引圧水頭の差、dzは地下水 と不飽和土壤最下層の中心である. Q_{gw} は Illinois にお ける観測に基づく Yeh and Eltahir¹⁵⁾の以下の関係式によ って与えられる.

$$Q_{gw} = \begin{cases} K(d_0 - d_{gw}); 0 \le d_{gw} < d_0 \\ 0; d_{gw} \ge d_0 \end{cases}$$
(5)

K は流出定数, *d*₀は WTD の境界, 基底流出量は*d_{gw}が* WTD の境界より小さいか否かによって定義される.

WTD を正確に表現するため, Koirala et al.¹⁰は MATSIRO の土壌層を 5 層から 13 層(上から, 5cm, 20cm, 75cm, 次の 9 層が 1m, 最下層が 30m, 計 40m) に変更した.本研究では地下水汲み上げにより WTD が 土壌最下層よりも下がらないよう, Pokhrel et al.¹¹に倣 い,最下層を 90m にし,計 100m の土壌層を考慮する.

 図-1 (a)深層地下水の表現が反映された MATSIRO と全球気候モデル(AGCM)のカップリングモデ ル(couple1)による 2000-2010 年の夏季(6, 7, 8 月)2m 高さ気温[℃]. (b)(a)と同様だが、使用 したデータは Sheffield et al.¹⁸⁾である.

2.5 地下水汲み上げモジュール

Pokhrel et al.¹¹⁾にて MATSIRO に取り入れられた地下 水汲み上げモジュールは地下水の取水,さらに,地下水 の涵養を表現している.地下水汲み上げ量は各グリッド における総取水要求量と河川や貯水池のような利用可能 な地表面水との差から推定され,以下の式で求められる.

$GW_{pt} = CWU_a + CWU_d + CWU_i - WS_{riv} - WS_{Mres}$	(6)
$CWU_d = f_d \times TWU_d$	(7)
$CWU_i = f_i \times TWU_i$	(8)

 $CWU_i = f_i \times TWU_i$ (8) ここで、 GW_{pt} は総地下水汲み上げ量、 CWU_a 、 CWU_d 、 CWU_i はそれぞれ農業、工業、家庭消費水量、 WS_{riv} 、 WS_{Mres} はそれぞれ川及び貯水池からの水供給量である. f_a 、 f_i は家庭及び工業総消費水比率であり、それぞれ 10%と15%に設定されている。この汲み上げられた地下 水は灌漑用水、家庭用水、工業用水となる、灌漑用水の 一部は再び土壌に貯えられるが、家庭及び工業用水はそ れを許さない.

2.6 使用データ

本研究において使用した 2m 高さ気温及び降水量デー タは Sheffield et al.¹⁸⁾ による 3 時間ごとの 1°×1°メッ シュ全球大気データである.このデータは再解析データ と観測データを組み合わせたものであり,降水強度や地 表面近くの気温,風速について再解析値の偏りを修正し ている.Sheffield et al.¹⁸⁾の降水量データには Global Precipitation Climatology Project(GPCP)による日降水量と

図-2 (a)深層地下水の表現が反映された MATSIRO と 全球気候モデル(AGCM)のカップリングモデル (couple1)による 2000-2010 年の夏季(6, 7, 8 月夏季降水量[mm day⁻¹]. (b)(a)と同様だが,使 用したデータは Sheffield et al.¹⁸⁾である.

Tropical Rainfall Measuring Mission (TRMM) による3時 間降水量が用いられている.

2.7 実験概要

本研究では上述の深層地下水の表現が反映された MATSIRO と MIROC のカップリングモデル(couple1), さらに, couple1 に加え,人間活動モジュール,地下水 汲み上げモジュールを組み込んだカップリングモデル (couple2)を用いる.現在は、その前段階として、人間活 動の影響が考慮されていない couple1 を用い、予備実験

 図-3 深層地下水の表現が反映された MATSIRO と全 球気候モデル(AGCM)のカップリングモデル (couple1)による 2000-2010 年の夏季(6, 7, 8 月)根域土壌水分量[mm]. としてモデルの気候値の特徴を確認しているところである.

3. 結果

図-1(a)に couple1 による 2000 - 2010 年の夏季(6, 7, 8 月)2m 高さ気温を、図-1(b)に観測値を示す. 同図による と, couple1 による高温地域は北部アフリカ, 中東アジ ア、東南アジア、アメリカ合衆国南部及びメキシコであ り, それらの地域は Sheffield et al.¹⁸⁾のデータとよく似 た傾向を示していることがわかる. しかし, couple1 は Sheffield et al.¹⁸⁾ のデータよりも北部アフリカ,中国東 部,南米大陸北部において 2m 高さ気温を低く評価して いる. couple1 による 2000-2010 年の夏季降水量を図-2(a)に, Sheffield et al.¹⁸⁾による 2000-2010 年の夏季降水 量を図-2(b)に示す. couple1 による多雨地域の分布はア フリカ中央部,インド,東南アジア諸国,中国東部,コ ロンビアやベネズエラであり、それらは Sheffield et al.¹⁸⁾ 同様の傾向が見られる.しかし, couple1 は中国東部に おいて降水量を Sheffield et al.¹⁸⁾ より過大評価している 一方,南米大陸北部において同データより過小評価して いる. 図-3 に couple1 による 2000-2010 年の夏季根域土 壌水分を示す. 同図によると、アフリカ北部や中東アジ ア,オーストラリア,メキシコ,アメリカ合衆国中部と いった乾燥地域において根域土壌水分量が低くなってい る.これはケッベンの気候区分においてステップ気候 (Bs)や砂漠気候(Bw)といった乾燥地帯や西岸海洋性気候 (Cfb, Cfc)といった半乾燥地帯と一致している.しかし, 中国東部においては半乾燥地帯であるにも関わらず、根 域土壌水分が 350mm 程と高くなっている.これは、図-2(a)にて示した降水量が中国東部において大きいことに 起因すると考えられる.

4. まとめ

本研究は AGCM を用い,人間活動の影響を考慮する ことで全球規模の大気大循環がどのように変化するかに ついて考察するため,前段階として,couple1 による気 候値の特徴を議論したものである.その結果,couple1 は 2m 高さ気温,降水量の分布は Sheffield et al.¹⁸⁾ によ く似ているものの,乾燥地域において 2m 高さ気温は過 小評価,降水量は過大評価していることがわかった.今 後,人間活動の影響を考慮した AGCM による実験を行 い,大気の振る舞いに人間活動がどのように影響を与え るかを調べる.

参考文献

- Koster, R. D. and GLACE team.: Regions of strong coupling between soil moisture and precipitation. Science, Vol. 305, pp. 1138-1140, 2004.
- Ferguson, C. R. et al.: A global interaction of modeled and observed landatmosphere coupling, J. Hydrometeor., 13:3, 849-784, 2012.
- 3) Yamada, T. J., Kanae, S., Oki, T., Hirabayashi, Y.,: The onset of the West African monsoon simulated in a high-resolution atmospheric general circulation model with reanalyzed soil moisture fields, Atmos. Sci. Lett., 103-107, 2012.
- 4) Wada, Y., I. P. H. van Beek, C. M. van Kampen, J. W. T. M. Reckman, S.

Vasak, andM. F. P. Bierkens: Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, doi:10.1029/2010GL044571, 2010.

- 5) Hanasaki, N., S. Kanae, and T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka: An integrated model for the assessment of global water resources—Part 1:Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 1007–1025, 2008a.
- 6) Hanasaki, N., S. Kanae, and T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka: An integrated model for the assessment of global water resources Part 2: Applications and assessments. Hydrol. Earth Syst. Sci., 12, 1027–1037, 2008b.
- 7) Pokhrel, Y., N. Hanasaki, S. Koirala, J. Cho, H. Kim, P. J. –F. Yeh, S. Kanae, and T. Oki: Incorporating anthropogenic water regulation modules into a land surface model, J. Hydrometeor., 13, 255-269, 2012b.
- Takata, K., S. Emori, and T. Watanabe: Development of the minimal advanced treatments of surface interaction and runoff Global Planet. Change, 38, 209–222, 2003.
- 9) Pokhrel, Y., N. Hanasaki, P. Yeh, T. Yamada, S. Kanae, and T. Oki: Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage, Nat. Geosci., 5, 389-392, 2012a.
- 10) Koirala, S., P. J. –F. Yeh, Y. Hirabayashi, S. Kanae, and T. Oki: Global-scale land surface hydrologic modeling with the representation of water table dynamics, J. Geophys. Res. Atmos., 119, 75-89, 2014.
- 11) Pokhrel, Y. N., S. Koirala, P. J.-F. Yeh, N. Hanasaki, L. Longuevergne, S. Kanae, and T. Oki: Incorporation of Groundwater Pumping in a Global Land Surface Model with the Representation of Human Impacts, Water Resources Research, 2014 (Under Review).
- Haltiner, G. J. and R. T. Williams: Numerical Prediction and Dynamic Meteorology (2nd ed.), John Wiley and Sons, 477pp., 1980.
- Oki, T., and Y. C. Sud,: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interactions, 2. [Available online at <u>http://EarthInteractions.org.</u>], 1998.
- 14) Krysanova, V., D.-I. Mu⁻ ller-Wohlfeil, and A. Becker,: Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol. Modell., 106, 261–289, 1998.
- 15) Yeh, P. J.-F., and E. A. B. Eltahir: Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Climate, 18, 1861– 1880, 2005.
- 16) Gutentag, E. D., F. J. Heimes, N. C. Krothe, R. R. Luckey, and J. B. Weeks: Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, U. S. Geol. Surv. Prof. Pap., 1400-B, 66 pp., 1984.
- 17) Strassberg, G., B. Scanlon, and D. Chambers: Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the high plains aquifer, central united states, Water Resour. Res., 45, W05, 410, 2009.
- 18) Sheffield, J., G. Goteti, and E. F. Wood: Development of a 50-year high resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088-3111, 2006.