強風下に伴う混合気液界面の熱画像計測

Infrared image measurements of mixing air-water surface in environment of high speed wind

北海道大学工学院	
北海道大学工学部	
北海道大学工学部	
寒地土木研究所	
北海道大学工学院	

○学生員	田代晃基	(Koki Tashiro)
正員	渡部靖憲	(Yasunori Watanabe)
正員	山田朋人(Tomohito Yamada)
正員	大塚淳一	(Junichi Otsuka)
学生員	大山高弘	(Takahiro Oyama)

1.はじめに

大気から海洋への輸送フラックスは従来海上風速に対 して単調増加する経験的に決定された海面抵抗係数の下 でモデル化されてきた。熱水分輸送もまた太陽放射に伴 う海水温の上昇、そして蒸発過程に加え、海上風による 撹乱に起因する水面更新平衡状態が仮定された波浪の粗 度としての効果が陰的に経験定数として含まれているも のの、待機境界層流れ以外のパラメータは考えられてい ない。

そこで、本研究では風洞つき造波水槽を使用し、強風 時の水面の温度変化の様子を高速 IR カメラで直接計測 することで、今まで明らかにされていなかった気液混合 二相流でのパラメータが熱輸送に与える影響を実験的に 明らかにしていこうとするものである。

2.実験方法

寒地土木研究所港湾実験棟の風洞つき造波水槽で実験 を行い、水槽は深さ 1.2m(+0.3m風洞天端)、幅 0.6m、 長さ 27mであった。実験機器は、高速度カメラ×4、 IRカメラ、赤色LED、超音波風速計、波高計を使用 した。

実験方法は、送風機によって気流を数パターン発生さ せそれに伴う水面形の変化や飛沫、気泡の混入などを高 速度カメラと IR カメラを使用して撮影する。実験装置 の設置は図1のように、まず高速カメラ3台を縦に並 べて水槽の横から液中、空気中、水面をバックライト法 によって撮影し、IRカメラは上から水面を撮影した。 IRカメラはLEDの影響を受け取得温度に影響が出る ことも考えられるため、LEDの光が届かない位置に設 置、IRカメラを設置した点の位相の変化を得るため水 平方向に高速度カメラを設置した。

送風機により発生させた風速は 10,12,13,14,15,16m/s の6パターンであり、撮影前にそれぞれ風速計でキャリ ブレーションを行い、静水面から0.6mから0.2mの地点 まで2cmずつ降下させ風速をそれぞれ計測した。

。また画像撮影時には波高計で水面の高さの変化を計測 し有義波高と有義周期を取得した。

計測結果から平均風速、摩擦速度u_{*a}、静水面から 10m の地点での風速U₁₀を求めたものがグラフ a, b、表 2 である。

図 1 実験装置図

発生風速	10m/s	12m/s	13m/s	14m/s	15m/s	16m/s
平均風速(m/s)	10.08	11.52	12.86	13.45	14.56	16.17
有義波高(cm)	7.1	8.7	12.6	11.8	13.8	13.6
有義周期(s)	0.6	0.68	0.73	0.76	0.81	0.81

表 1 平均風速、有義波高、有義周期

a 静水面からの高さと風速の関係

b 静水面からの高さと摩擦速度の関係

これらの結果から実験条件の不安定性を検証するため、 Kelvin-Helmholtz(KH)不安定の再現について考える。こ こで KH 不安定とは急速に成長する種類の不安定であり、 気液間の境界面での、直接的混合は KH 不安定に起因す るものである。また、KH 不安定による気液間の境界面 の崩壊は波の峰からの気流の分離を引き起こす。無次元 数である Koga number (Koga [1981]) と critial Koga number (Soloviev and Lukas [2006])K_{cr}を用いて、

$$K = \frac{u_{*a}}{(g\delta_s\rho_w/\rho_a^2)^{\frac{1}{4}}}$$

K: Koga number, u_{*a}: 摩擦速度, δ_s: 表面張力,
g: 重力加速度, ρ_w, ρ_a: それぞれ液体と気体の密度

Koga number が critical Koga number を超えたときに KH 不安定を見ることができる。つまり $K > K_{cr}$ であれば KH 不安定が発生する。 critical Koga number の上限は Koga[1981]の実験により $K_{cr} \approx 0.26(U_{10} \Rightarrow 30 \text{m/s})$ であると 予測されている。

発生させた風速が 14m/s, 15m/s, 16m/s のケースは $K > K_{cr}$ となり KH 不安定の状態であると言える。この 3 ケースでは波峰から多くの飛沫が分離して気体中には多 くの飛沫が飛び、液体中には飛沫によって多くの気泡が 混入し気液混合二相流の発生が確認された。

発生させた風速	10m/s	12m/s	13m/s	14m/s	15m/s	16m/s
平均風速(0.2m~0.34m)	10.08267	11.51771	12.86288	13.45367	14.55917	16.17262
U10	16.61897	19.5909	22.54704	23.95139	26.64891	30.99327
Koga number	0.152653	0.188589	0.226453	0.24517	0.282429	0.346041

表 2 風速と U10、Koga number の関係

4.解析方法

画像処理の方法としてまず、撮影した画像のキャリブレーションを行い、lpixel を 0.5mm に対応するよう変換した。そして、IRカメラでは視野内感度のばらつき

やカメラ自身の反射、ノイズなどがあり取得温度に偏り が出るため(図 2(A))、送風前に静水面の温度を撮影 しておき(図 2(B))、送風後の水面を撮影した画像か ら静水面の画像を引くことでばらつきを補正する。なお 補正前にはそれぞれの画像にメディアンフィルタの処理 によってノイズを除去した。これらの処理によって、気 流発生時の水面の相対温度を取得した(図 2(C))。ノ イズやカメラの反射によって周囲と大きく差がある値が あった場合、全体の平均を求めたときにその値に引っ張 られ正確な平均をとることができないため、画像全体の 平均値と標準偏差を求め、平均値から標準偏差の4倍以 上差が出た値を欠測値と置いた。そして欠測値込みの画 像の平均を欠測値の値にいれ、平均値から大きくはずれ た値を除去し補完した(図 2(D))。これらの処理によ って視野内感度のばらつきや、レンズ自身の反射などを 補正した。

撮影された画像すべてにこれらの補正をし、補正後の画 像をもとに気流発生時の水面の温度変化について解析し ていく。

解析内容としては画像の平均と標準偏差、温度分布、 画像の縦方向の1次元フーリエ変換、横方向の1次元フ ーリエ変換である。

グラフ c は風速がそれぞれ 2 秒分の変化を横軸に時間、 縦軸に温度と標準偏差をとって各ケースについてそれぞ れプロットした。各ケースについての有義周期は表1の ようになっている。

また発生風速 16m/s のときの 8 分の 1 ごとの波の位相 は画像のようになっている。このような横から撮影した 画像によって、波の位相を求めた。

c 各風速の温度平均値の時間変化とその標準偏差

温度変化と波の位相の関係は波が通過に伴って水面の 温度が上昇し、波が過ぎたときに温度が低下する。表面 更新説の通り水面が気流によって絶えず更新され続けて いる。

温度変化と標準偏差の関係は、温度が下がる時間と連 動して標準偏差が大きくなっている。これは温度が下が るときは、砕波によって乱流が発生し流体内部の低温部 分が水面に現れている。乱流なので内部と交換されない 部分も多くあるので温度のばらつきが大きくなるという ことを表している。また波の通過に伴う温度の上昇時に は、標準偏差が小さくなっているので、温度のばらつき が小さくなっている。

発生させた風速が 16m/s の場合は温度の振れ幅がそれ より弱い風速のときよりも大きくなっている。これは、 風速が大きくなったことで界面の移送が活発になったか らである。

波の位相による温度分布の移動は観測された風速が大 きくなるほど顕著に見られた。表面更新による熱の移動 は風速に依存しているという予測ができる。

4. まとめ

強風時に発生する気液混合層の熱の移動を直接計測し、 波の位相による温度変化を求めた。今後はより多くのデ ータを用いて統計的に解析を進めていくと共に、風速の パラメータとも関連させた解析を行っていく。

そして、気流を発生させた状態で造波した条件での実 験も計画している。

6.参考文献

Alexander Soloviev, Atsushi Fujiyama, and Silvia Matt(2010), Air-sea interface in hurricane conditions, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J34, doi:10.1029/2011JC007760,2012

Koga, M. (1981), Direct production of droplets from breaking wind-waves. Its observation by a multi-colored overlapping exposure technique, Tellus,Ser. A, 33,55-563, doi:10.1007/s10546-011-9624-2