東日本大震災における津波起源混濁流の発生源

THE SOURCE AREA OF THE TSUNAMIGENIC TURBIDITY CURRENT IN THE GREAT EAST JAPAN EARTHQUAKE

北海道大学工学部環境社会工学系	○学生員	和田	萌実	(Moemi Wada)
北海道大学大学院工学院教授	正会員	泉	典洋	(Norihiro Izumi)
北海道大学大学院工学院准教授	正会員	渡部	靖憲	(Yasunori Watanabe)

1. はじめに

海底面上に生じた何らかの流動によって土砂が巻き上 げられ水塊中の浮遊砂濃度が上昇すると、周囲の海水と の密度差によって海底面上を流下する密度流が発生する. この密度流は混濁流と呼ばれ、流動によって海底面上の 土砂をさらに巻き上げることで継続的に密度差を増加さ せ流下方向に加速していくという自己加速性を有してい る. この自己加速性によって混濁流は時としてその発生 源から非常に長い距離を移動することが知られている.

大陸縁辺部(大陸棚の縁)には陸地に見られるものに 類似した峡谷地形(海底峡谷)が見られることが知られ ている. 海底峡谷の発生初期には大陸棚下流端から大陸 斜面上に規則的な間隔で並んだ初期水路(海底ガリ)が 形成されるが、大陸棚下流端や大陸斜面上を侵食し、こ れらガリやそれが発達した海底峡谷を形成する営力が, この混濁流であると考えられている¹⁾.しかし混濁流が 海底ガリや海底峡谷の成因となるためには、海底地すべ りを起源とするような点的な混濁流ではなく、大陸棚上 で横断方向に一斉に発生するような線的・面的な混濁流 である必要がある. Izumi¹⁾はこのような混濁流の発生原 因として、水深 100 m 程度を有する大陸棚下流端の海 底面上の土砂も巻き上げるような記録的な高波や高波浪 の可能性を指摘している.しかし線的・面的な混濁流の 発生についてその詳細はよくわかっていないのが現状で ある.

2011 年 3 月 11 日 14 時 46 分 18 秒に海底を震源とし たモーメントマグニチュード 9.0 の東日本大震災が発生 した. これにより発生した巨大津波によって東北沖の太 平洋海底では大規模な混濁流が発生した可能性が Arai et al.²⁾によって指摘されている. 彼らによれば, 地震発生 3時間後に,北緯 38 度 18 分東経 142 度 41 分の海底に 設置された海底圧力計(OBP)と海底地震計(OBS)が沖合 の深海方向へ約1 km 流されるという事象が確認された. この原因としては地震によって発生した海底地すべりに よるものも考えられるが,発生時刻が地震発生から3時 間後であったこと,流された OBP および OBS の内部が 土砂で充填されていたこと、流されると同時に OBS が 約0.2 ℃の温度上昇を記録したことから, Arai et al.は地 すべりによるものではなく津波によって発生した混濁流 が OBP および OBS を深海側へ押し流したものだと推測 している. OBP および OBS が混濁流によって押し流さ れる際、それらの内部が混濁流を構成する土砂によって 充填され、浅海域の温度の高い流体が混濁流を形成し OBP を押し流したため温度の急上昇が記録されたので

ある.

本研究では、このような津波による混濁流の発生過程 や発生源を明らかにするために津波シミュレーションソ フト iRIC-ELIMO³⁾を用いて東日本大震災で発生した津 波を再現し、東北沖海底における底面せん断応力分布を 算出するとともに、海底面上における浮遊砂の巻き上げ 量を見積もることで、混濁流の発生源を推測する.

2. iRIC-ELIMO の概要

2.1 基礎方程式

支配方程式は球面座標上で表記した水深積分型運動方 程式で表される.大気圧を一定値と仮定し,水面のせん 断応力を無視することで経度方向および緯度方向の運動 方程式はそれぞれ次式のようになる.

$$\frac{Du}{Dt} = -\frac{g}{R\cos\phi} \frac{\partial\varsigma}{\partial\lambda} - \frac{\tau_{\lambda}^{b}}{\rho(h+\varsigma)} + A_{d}u
+ \gamma_{h}^{*} \left(\frac{1}{R^{2}\cos^{2}\phi} \frac{\partial^{2}u}{\partial\lambda^{2}} + \frac{1}{R^{2}\cos\phi} \frac{\partial}{\partial\phi} \left(\cos\phi \frac{\partial u}{\partial\phi} \right) \right)
+ \left(2\Omega + \frac{u}{R\cos\phi} \right) v \sin\phi \tag{1}$$

$$\frac{Dv}{Dt} = -\frac{g}{R\cos\phi} \frac{\partial\varsigma}{\partial\phi} - \frac{\tau_{\phi}^{b}}{\rho(h+\varsigma)} + A_{d}v \\
+ \gamma_{h}^{*} \left(\frac{1}{R^{2}\cos^{2}\phi} \frac{\partial^{2}u}{\partial\lambda^{2}} + \frac{1}{R^{2}\cos\phi} \frac{\partial}{\partial\phi} \left(\cos\phi \frac{\partial v}{\partial\phi} \right) \right) \\
+ \left(2\Omega + \frac{u}{R\cos\phi} \right) u\sin\phi \tag{2}$$

質量保存則からなる水深積分連続式は次式で表される.

$$\frac{D\varsigma}{Dt} = -\frac{g}{R\cos\phi} \left(\frac{\partial uh}{\partial\lambda} + \varsigma \frac{\partial u}{\partial\phi} \right) - \frac{1}{R} \left(\frac{\partial vh}{\partial\phi} + \varsigma \frac{\partial v}{\partial\phi} \right) + \frac{\tan\phi}{R} v(h+\varsigma)$$
(3)

ここで,

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{u}{R\cos\phi} \frac{\partial}{\partial\lambda} + \frac{v}{R} \frac{\partial}{\partial\phi}$$

底面せん断応力は次式で表される.

$$\tau_{\lambda}^{b} = \rho C_{d} | u | u , \quad \tau_{\phi}^{b} = \rho C_{d} | v | v$$

u, v は水深平均流速, R は地球の中心からの距離, Ω は 地球の自転角速度, ρ は清水の密度, λ は経度, ϕ は緯 度, h は水深, ς は水位変動である. γ_h^* は修正水平運動 量交換係数であり $\gamma_h^* = \gamma_h A_d$, γ_h は水平運動量交換係数, A_d は後述するスポンジ層における減衰係数, C_d は抵抗 係数であり, ここでは海底面上の発達した流れの際に用 いられる 5×10⁻³ 4)を与えている.

2.2 数値計算法と境界条件

iRIC-ELIMO では,高精度非線形差分計算を行って式 (1)-(3)を解いている.二段階分離解法を適用し,移流項 に対しては CIP 法,水位勾配および拡散計算について は予測子法が適用されている.遡上計算は行わず汀線に 仮想的な不透過壁を与えて津波高を求める汀線不透過条 件が用いられている.また有限の計算領域の境界線で波 浪が境界を通過する条件 Sommerfeld 放射条件⁵⁾が使わ れている.ただしこの条件では有意な波の反射が現れる ことがある.この影響を低減するため,Cruz らの減衰 項⁶を一様グリット系に適用し,スポンジ層を境界に隣 接する領域に配置することで波の減衰を促進させ境界か らの反射波の影響を低下させている.

2.3 初期条件

東日本大震災で発生した津波の初期水位は、国土地理 院から発表されている2つの断層パラメータからなる矩 形断層モデル⁷(表-1)で再現される.両断層領域の滑 り発生時間に時差は設定していない.海底地形データは 日本海洋データセンターから得られる500mメッシュデ ータ⁸⁾を使用した.経度36~43度、緯度140~146度を 解析領域とし、緯度、経度を165×190分割とした.

2.4 津波シミュレーション結果と観測データとの比較

緯度「゜〕

latitude

iRIC-ELIMO によって得られた津波波形結果の妥当性 を検討するために, GPS 波浪計観測データ⁹との比較を

経度[°]

longitude

長さ[km]

repture length

行う. 図-1(a)は GPS 波浪計の設置箇所を示した図であ り,(b)および(c),(d),(e)はシミュレーション結果と GPS 波浪計観測データにおける水位変動を比較した図 である. 図中の赤い実線は観測値,青い実線はシミュレ ーション結果を示している.

図-1(b)を見ると分かるように岩手南部沖ではシミュ レーション結果と観測値の一致はあまりよくない. 初期 水位を簡易化した矩形断層モデルで与えていることや両 断層領域の滑り発生時差を設定していないことなどが要 因であると考えられるが,少なくとも本研究で重要とな る混濁流の発生源の可能性がある宮城以南の領域では合 理的な範囲内で観測値を再現できている.

3. 浮遊砂巻き上げ量の計算

底質が混合砂で構成されているとし、その粒径をいく つかのカテゴリに分ける.カテゴリ*i*に属する砂の無次 元巻き上げ速度 E_i は Garcia and Parker の式¹⁰⁾を用いる と次のように表される.

$$E_{i} = F_{i}E_{ui} = F_{i}\frac{AZ_{ui}^{5}}{1 + \frac{A}{0.3}Z_{ui}^{5}}$$
(4a)

$$A = 1.3 \times 10^{-7}, \quad Z_{ui} = \lambda_m \frac{u_{*s}}{v_{si}} \operatorname{Re}_{pi}^{0.6} \left(\frac{D_i}{D_{50}}\right)^{0.2} \quad (4b, c)$$

滑り角[°]

rake angle

滑り量[m]

slip length

$$\lambda_m = 1 - 0.298\sigma \tag{4d}$$

ここで、 E_{ui} は海底面上の砂が粒径カテゴリiのみで構成されているとした時の無次元巻き上げ速度、 F_i は河床土砂に含まれる粒径カテゴリiの割合、 u_{ss} は底面摩擦速度(= $\sqrt{\tau_b/\rho}$)、 v_{si} は粒径カテゴリiの沈降速度、 Re_{pi} は粒子レイノルズ数(= $\sqrt{RgD_i}D_i/v$)、 σ は河床土

傾斜角[°]

dip angle

表-1 東日本大震災における矩形断層モデル

走向[°]

strike angle

幅[km]

rupture width

図-1 GPS 波浪計から得られた水位変動と ELIMO によるシミュレーション結果との比較(a) GPS 波浪計設置箇所 図中の記号はその他の図の枝番号に対応(b) 岩手南部沖,(c) 宮城北部沖,(d) 宮城中部沖,(e) 福島沖 砂に対する標準偏差である.また τ_b は底面せん断応力 で次式により表される.

$$\boldsymbol{\tau}_{b} = \left[\left(\boldsymbol{\tau}_{\lambda}^{b} \right)^{2} + \left(\boldsymbol{\tau}_{\phi}^{b} \right)^{2} \right]^{\frac{1}{2}}$$

カテゴリ*i*に属する砂の沈降速度 *v_{si}* は Dietrich¹¹⁾が提案 した次式を用いて求める

$$\frac{v_{si}}{\sqrt{RgD}} = \exp\left\{ \frac{-b_1 + b_2 \ln(\operatorname{Re}_p) - b_3 [\ln(\operatorname{Re}_p)]^2}{-b_4 [\ln(\operatorname{Re}_p)]^3 - b_5 [\ln(\operatorname{Re}_p)]^4} \right\}$$

ここで, D は粒径, R は混濁流に含まれる浮遊粒子の水

中比重であり通常の土粒子では 1.65, g は重力加速度 (=9.8 m/s²), v は動粘性係数(=1 × 10⁻⁶ m²/s), b_1 =2.891394, b_2 =0.95296, b_3 =0.056835, b_4 =0.002892, b_5 =0.000245 である.東北沖に分布する砂の粒径が 0.017~0.20 mm²)であることから沈降速度は 0.00026~ 0.022 m/s, 粒子レイノルズ数は 0.29~11.16 の範囲とな る.これらの値および式(4)から混合砂における巻き上 げ速度 ε m/s を以下の式で求めることができる.

$$\varepsilon = \sum E_i v_{si} \tag{5}$$

図中の記号はその他の図の枝番号に対応 (b)宮城北部沖, (c)牡鹿半島北側, (d)仙台湾南側, (e) 0BP, 0BS 設置箇所

4. 結果と考察

4.1 せん断応力の時間変化

図-2(a)および(b), (c)はそれぞれ津波発生直後, 1 時間後,3時間後における底面せん断応力の空間分布で ある. グラフにより凡例中の最大値が異なる点に注意さ れたい. 図-2(a)より、津波の発生直後に沖合から押し 寄せる津波第1波目は沖合約100kmの海底で比較的大 きな底面せん断応力 0.86 kg/m・s² を作用させているこ とが分かる.津波が東北沿岸部に到達してからは岸から 50 km 以内の近海域で 30~50 kg/m・s²のせん断応力が 長時間作用し、その後徐々に作用する範囲を広げながら 減衰していく.特に、せん断応力が最大となるのは津波 発生から 40 分後の牡鹿半島北部で 128 kg/m・s²の応力 が作用している. 図-2(b)および(c)より,1時間後に牡 鹿半島北部で 36 kg/m・s², 3 時間後には 5 kg/m・s² まで 減衰していくものの、津波第1波が沖合 100km の海底 に作用するせん断応力より大きい応力であることがわか る.

4.2 巻き上げ速度の時間変化

底質の粒度分布がほぼ正規分布しているとして,最小 粒径 0.017 mm を 25%,平均粒径 0.11 mm を 50%,最大 粒径 0.20 mm が 25%混合されていると仮定し浮遊砂の 巻き上げ量の計算を行った.

図-3(a)および(b),(c)はそれぞれ津波発生直後,1 時間後,3時間後における混合砂の浮遊砂巻き上げ速度 の空間分布図である.グラフにより凡例中の最大値が異 なる点に注意されたい.図-3(a)を見ると津波第1波に よる最大巻き上げ速度は5.14×10⁵m/sで以後の巻き上 げ速度と比較すると大きなものではなかった.図-3(b) を見ると牡鹿半島北側における巻き上げ速度が2.9×10³ m/sと最も速く,仙台湾内に約1.0~2.6×10³m/sの巻き 上げ速度が広範囲に発生している.巻き上げ速度は徐々 に減衰していき,図-3(c)3時間後には牡鹿半島北部で は2.0×10³m/s,仙台湾内では0.4~2.0×10³m/sとなる ものの,津波第1波が沖合100kmの海底の土砂を巻き 上げた速度より速いことが分かる.

図-4(a)に示した(b)宮城北部沖,(c)牡鹿半島北側, (d)仙台湾南側,(e)OBS および OBP 設置箇所における 浮遊砂の巻き上げ速度の時間変化を示した.OBP およ び OBS が流された 3 時間後に対応する 10800 秒まで示 されている.図-4(b)および(d)では,津波第一波が到達 したときに巻き上げ速度が最大となるが,その後著しく 低下しているのがわかる.図-4(c)では,2530 秒後に最 大の巻き上げ速度 2.9×10³ m/s を示し,その後減少す るもののかなり大きな巻き上げが継続するのがわかる.

図-4(e)では津波発生から 10800 秒後まで巻き上げ速 度は 1.4×10⁻⁵ m/s 前後で大きな変動はなく,他の点と 比較して巻き上げ速度は著しく小さい.

以上のことから、津波第一波によって沖合で発生した 巻き上げは、牡鹿半島北部から仙台湾にかけて継続的に 発生したものと比べると、大きさおよび継続時間ともに ごくわずかな値しか示していない.津波第一波によって 沖合に発生する土砂巻き上げは、第一波が通過する際の みの一過性のものであり、津波が東北沿岸部に到達して 以降,再び巻き上げが発生することはない.それに対し, エッジ波が岸近傍で発生することで繰り返しせん断応力 を与え続けるため沿岸部で大きな巻き上げを発生させる. 特に大きな巻き上げ速度が継続するのは牡鹿半島北部お よび仙台湾の岸から 40 km の範囲内である.

以上のことを考えると OBP および OBS を沖合に押し 流した混濁流は,津波第一波によって沖合で発生したと 考えるより,牡鹿半島北部から仙台湾沿岸の岸から 40 km の範囲で発生したと考えるのが妥当である.

5. 結論

本研究では東北地方沿岸域において津波シミュレーシ ョンを行い、その結果から底面せん断応力を見積り、浮 遊砂の巻き上げ速度を算出した.対象とした全領域にお いて粒度分布が一様である等の近似を行っているものの、 本研究によって岸から 40km 範囲内、特に牡鹿半島北部 および仙台湾内北部で海底面上の多くの土砂が巻き上げ られたことが明らかになった.これは、津波によって岸 近くに発生したエッジ波が海底面上に長時間大きなせん 断応力を与えたため大量の浮遊砂が巻き上げられたこと を示唆している.これらのことから、OBP および OBS を押し流した混濁流の発生源は牡鹿半島北部および仙台 湾内北部である可能性が高いと推測できる.

参考文献

- Izumi, N.: The formation of submarine gullies by turbidity, J. Geophysical, Vol. 109, C03048, doi: 10.1029/2003JC001898, 2004.
- Arai, K., Naruse, H., Miura, R., Kawamura, K., Hino, R., Ito, Y., Inazu, D., Yokokawa, Y., Izumi, N., Maruyama, M. and Kasaya, T.: Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake, Soc. Am. Bull., 2013.
- 3) 河川シミュレーションソフト: http://i-ric.org/ja/index.html
- Patrick J. Lynett, Tso-Ren Wu. and Philip L.-F. Liu.: Modeling wave runup with depth-integrated equations, Coast. Eng. 46, pp. 89-107, 2002.
- Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J. Comp .phys., Vol.21, pp. 251-269, 1976.
- Eric Cruz, 横木裕宗, 磯部雅彦, 渡辺晃: 非線形は同 方程式に対する無反射境界条件について, 海岸工学 論文集, 40, pp. 46-50, 1993.
- 地理地殻活動研究センター:電子基準点(GPS連続 観測測点)データ解析による地殻変動と震源断層モ デル
- 8) 日本海洋データセンター: 500mメッシュ水深
- 9) Nowphas.:東北地方太平洋沖地震による津波観測デ ータ
- Garcia, M. and Parker, G.: Entrainment of bed sediment into suspension, J. Hydr. Eng., 117(4), pp. 414-435, 1991.
- 11) Dietrich, W.E.: Settling velocity of natural particles, Water Resour. Res., 18(6), pp. 1626-1982, 1982.